
Notes for Lecture 16 Fri, 9/27/2024

Spotlight on the exponential function

Example 65. Solve y 0= ky where k is a constant.
Solution. (experience) At this point, we can probably see that y(x)= ekx is a solution.
In fact, the general solution is y(x)=Cekx.
That there cannot be any further solutions follows from the existence and uniqueness theorem (see next example).

Solution. (separation of variables) Alternatively, we can solve the DE using separation of variables.

Express the DE as dy

dx
= ky, then write it as 1

y
dy= kdx (note that we just lost the solution y=0).

Integrating gives lnjy j= kx+D, hence jy j= ekx+D.

Since the RHS is never zero, y =�ekx+D = Cekx (with C =�eD). Finally, note that C = 0 corresponds to
the singular solution y=0 that we lost. In summary, the general solution is Cekx.

Example 66. Consider the IVP y 0=ky, y(a)= b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y 0= f(x; y) with f(x; y)= ky. We compute that @

@y
f(x; y)= k.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.
Comment. As a consequence, there can be no other solutions to the DE y 0 = ky than the ones of the form
y(x)=Cekx. Why?! [Assume that y(x) satisfies y 0=ky and let (a; b) any value on the graph of y. Then y(x)
solves the IVP y0=ky, y(a)= b; but so does Cekx with C= b/eka. The uniqueness implies that y(x)=Cekx.]

In particular, we have the following characterization of the exponential function:

ex is the unique solution to the IVP y 0= y, y(0)= 1.

Comment. Note that, for instance, d

dx
2x= ln(2) 2x. (This follows from 2x= eln(2

x)= exln(2).)
Since ln= loge, this means that we cannot avoid the natural base e�2.718 even if we try to use another base.

Euler's method applied to ex

Example 67. Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for x 2 [0; 1]
using Euler's method with 4 steps. In particular, what is the approximation for y(1)?
Comment. Of course, the real solution is y(x)= ex. In particular, y(1)= e� 2.71828.

Solution. The step size is h= 1¡ 0
4

=
1

4
. We apply Euler's method with f(x; y)= y:

x0=0 y0=1

x1=
1
4

y1= y0+hf(x0; y0)= 1+
1
4
� 1= 5

4
= 1.25

x2=
1
2

y2= y1+hf(x1; y1)=
5
4
+
1
4
� 5
4
=
52

42
= 1.5625

x3=
3
4

y3= y2+hf(x2; y2)=
52

42
+
1
4
� 5
2

42
=
53

43
� 1.9531

x4=1 y4= y3+hf(x3; y3)=
53

43
+
1
4
� 5
3

43
=
54

44
� 2.4414

In particular, the approximation for y(1) is y4� 2.4414.

Comment. Can you see that, if instead we start with h= 1

n
, then we similarly get xi=

(n+1)i

ni
for i=0;1; :::; n?

In particular, y(1)� yn=
(n+1)n

nn
=
�
1+

1

n

�n
! e as n!1. Do you recall how to derive this final limit?

Example 68. (cont'd) Consider the IVP y 0 = y, y(0) = 1. Approximate the solution y(x) for
x 2 [0; 1] using Euler's method with n steps for several values of n. In each case, what is the
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approximation for y(1)?
Solution. Since the real solution is y(x)= ex so that, in particular, the exact solution is y(1)= e� 2.71828.
We proceed as we did in Example 67 in the case n=4 and apply Euler's method with f(x; y)= y:

xn+1 = xn+h

yn+1 = yn+h f(xn; yn)

=yn

=(1+h)yn

We observe that it follows from yn+1= (1+ h)yn that yn= (1+ h)ny0. Since y0=1 and h= 1¡ 0
n

=
1

n
, we

conclude that

xn=1; yn=

�
1+

1
n

�n
:

[For instance, for n=4, we get x4=1, y4=
�
5

4

�
4
� 2.4414 as in Example 67.]

In particular, our approximation for y(1) is
�
1+

1

n

�n
.

Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

We can see that Euler's method converges to the correct value as n!1. On the other hand, we can see that it
doesn't converge impressively fast. That is why, for serious applications, one usually doesn't use Euler's method
directly but rather higher-order methods derived from the same principles (such as Runge�Kutta methods).

Interpretation. Note that we can interpret the above values in terms of compound interest. We start with initial
capital of y(0)=1 and we are interested in the capital y(1) after 1 year if we receive interest at an annual rate
of 100%:

� If we receive a single interest payment at the end of the year, then y(1)= 2 (case n=1 above).

� If we receive quarterly interest payments of 100%
4

=25% each, then y(1)=(1.25)4=2.441::: (case n=4).

� If we receive monthly interest payments of 100%
12

=
1

12
each, then y(1)= 2.6130::: (case n= 12).

� If we receive daily interest payments of 100%
365

=
1

365
each, then y(1)= 2.7145::: (case n= 365).

It is natural to wonder what happens if interest payments are made more and more frequently. Well, we already
know the answer! If interest is compounded continuously, then we have e in our bank account after one year.

Challenge. Can you evaluate the limit limn!1
�
1+

1

n

�n
using your Calculus I skills?
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