Example 39. Solve $(x - y) \frac{dy}{dx} = x + y$. Solution. Divide the DE by x to get $\left(1-\frac{y}{x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 1+\frac{y}{x}$. This is a DE of the form $y'=F\big(\frac{y}{x}\big).$ $\sum_{i=1}^{n}$. We therefore substitute $u = \frac{y}{x}$. Then $y = ux$ and $\frac{dy}{dx} = x\frac{du}{dx} + u$. The resulting DE is $(x - ux)\Big(x\frac{\mathrm{d}u}{\mathrm{d}x} + u\Big)$ $= x + ux$, which simplifies to $x(1 - u)\frac{\mathrm{d}u}{\mathrm{d}x}$ $= 1 + u^2$. 2 . This DE is separable: $\frac{1-u}{1+u^2}\mathrm{d}u=\frac{1}{x}\mathrm{d}x$ Integrating both sides, we find $\arctan(u)-\frac{1}{2}{\rm ln}(1+u^2)={\rm ln}|x|+C.$ $\frac{1}{2}$ ln(1+*u*²) = ln|*x* | + *C*. Setting $u=y/x$, we get the (general) implicit solution $\arctan(y/x)-\frac{1}{2}\text{ln}(1+(y/x)^2)\!=\!\ln\!|x|\!+\!C$. $\frac{1}{2}$ ln(1+(*y*/*x*)²) = ln|*x*|+*C*. **Comment.** We used $\int \frac{1}{1+u^2} du = \arctan(u) + C$ and $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$ when integra $\frac{1}{2}$ ln(1+ x^2)+*C* when integrating. See Example [35](#page--1-0) where we reviewed these integrals.

Example 40. Solve the IVP $\frac{dy}{dx} = 2y - 3xy^5$, $y(0) = 1$.

 ${\bf Solution.}$ This is an example of a Bernoulli equation (with $n=5$). We therefore substitute $u=y^{1-n}=y^{-4}.$. Accordingly, $y = u^{-1/4}$ and, thus, $\frac{dy}{dx} = -\frac{1}{4}u^{-5/4}\frac{du}{dx}$. d*x* . The new DE is $-\frac{1}{4}u^{-5/4}\frac{\mathrm{d}u}{\mathrm{d}x}$ $= 2u^{-1/4} - 3x\,u^{-5/4}$, which simplifies to $\frac{\mathrm{d}u}{\mathrm{d}x}$ $= -8u + 12x$. This is a linear first-order DE, which we solve according to our recipe:

- (a) Rewrite the DE as $\frac{du}{dx} + P(x)u = Q(x)$ with $P(x) = 8$ and $Q(x) = 12x$.
- (b) The integrating factor is $f(x) = \exp\left(\int P(x) \mathrm{d}x\right) = e^{8x}$.
- (c) Multiply the (rewritten) DE by $f(x) = e^{8x}$ to get

$$
e^{8x}\frac{du}{dx} + 8e^{8x} u = 12xe^{8x}.
$$

$$
= \frac{d}{dx}[e^{8x}u]
$$

 (d) Integrate both sides to get:

$$
e^{8x}u = 12 \int xe^{8x} dx = 12 \left(\frac{1}{8} x e^{8x} - \frac{1}{8^2} e^{8x} \right) + C = \frac{3}{2} x e^{8x} - \frac{3}{16} e^{8x} + C
$$

Here we used that $\int xe^{ax}dx = \frac{1}{a}xe^{ax} - \frac{1}{a^2}e^{ax}$. (Integration by parts! $\frac{1}{a^2}e^{ax}$. (Integration by parts!)

The general solution of the DE for u therefore is $u\!=\!\frac{3}{2}x-\frac{3}{16}+Ce^{-8x}.$ Correspondingly, the general solution of the initial DE is $y = u^{-1/4}$ $=$ $1/\sqrt[4]{\frac{3}{2}x-\frac{3}{16}}+Ce^{-8x}.$ $\sqrt[4]{\frac{3}{2}x - \frac{3}{16} + Ce^{-8x}}$. . Using $y(0)=1$, we find $1=1/\sqrt[4]{C-\frac{3}{16}}$ from which we obtain $C=$ $\sqrt[4]{C - \frac{3}{16}}$ from which we obtain $C = 1 + \frac{3}{16} = \frac{19}{16}$. 16 . The unique solution to the IVP therefore is $y=1/\sqrt[4]{\frac{3}{2}x-\frac{3}{16}+\frac{19}{16}e^{-8x}}.$ $\sqrt[4]{\frac{3}{2}x - \frac{3}{16} + \frac{19}{16}e^{-8x}}$. .

Solving simple 2nd order DEs

We have the following two useful substitutions for certain simple DEs of order 2:

- $F(y'', y', x) = 0$ (2nd order with " y missing") Set $u = y' = \frac{dy}{dx}$. Then $y'' = \frac{du}{dx}$. We get t $\frac{dy}{dx}$. Then $y'' = \frac{du}{dx}$. We get the first-order DE $\frac{du}{dx}$. We get the first-order DE $F\Big(\frac{du}{dx},u,x\Big)=0.$ $\frac{du}{dx}$, u, x = 0.
- $F(y'', y', y) = 0$ (2nd order with " x missing") Set $u = y' = \frac{dy}{dx}$. Then $y'' = \frac{du}{dx} = \frac{du}{dx} \cdot \frac{dy}{dx}$. $\frac{dy}{dx}$. Then $y'' = \frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u$. We get the $\frac{\mathrm{d}u}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}y} \cdot u$. We get the first-order $\frac{\mathrm{d}u}{\mathrm{d}y}\cdot u$. We get the first-order DE $F\!\left(u\frac{\mathrm{d}u}{\mathrm{d}y},u,y\right)\!=\!0.$ $\frac{du}{dy}$, u, y = 0.

Example 41. Solve $y'' = x - y'$. *0*.

 ${\bf Solution.}$ We substitute $u=y'$, which results in the first-order DE $u'=x-u.$

This DE is linear and, using our recipe (see below for the details), we can solve it to find $u = x - 1 + Ce^{-x}$. Since $y'=u$, we conclude that the general solution is $y=\int(x-1+Ce^{-x})\mathrm{d}x=\frac{1}{2}x^2-x-Ce^{-x}+D.$ Important comment. This is a DE of order 2. Hence, as expected, the general solution has two free parameter. ${\bf Solving}$ the linear ${\bf DE}.$ To solve u' $=$ x u (also see Example [31,](#page--1-1) where we had solved this DE before), we

- (a) rewrite the DE as $\frac{du}{dx} + P(x)u = Q(x)$ with $P(x) = 1$ and $Q(x) = x$.
- (b) The integrating factor is $f(x) = \exp\left(\int P(x) dx\right) = e^x$.
- (c) Multiply the (rewritten) DE by $f(x) = e^x$ to get $e^x \frac{du}{dx} + e^x u = xe^x$. $=\frac{\mathrm{d}}{\mathrm{d}x}[e^x u]$ $\frac{du}{dx} + e^x u = xe^x.$
 $\frac{d}{dx}[e^x u]$

(d) Integrate both sides to get (using integration by parts): $e^x\,u=\int xe^x\mathrm{d}x=xe^x-e^x+C$

Hence, the general solution of the DE for *u* is $u = x - 1 + Ce^{-x}$, which is what we used above.

Example 42. (homework) Solve the IVP $y'' = x - y'$, $y(0) = 1$, $y'(0) = 2$.

Solution. As in the previous example, we find that the general solution to the DE is $y(x) = \frac{1}{2}x^2 - x - Ce^{-x} + D$. Using $y'(x) = x - 1 + Ce^{-x}$ and $y'(0) = 2$, we find that $2 = -1 + C$. Hence, $C = 3$. Then, using $y(x) = \frac{1}{2}x^2 - x - 3e^{-x} + D$ and $y(0) = 1$, we find $1 = -3 + D$. Hence, $D = 4$. In conclusion, the unique solution to the IVP is $y(x) = \frac{1}{2}x^2 - x - 3e^{-x} + 4$.

Example 43. (extra) Find the general solution to $y'' = 2yy'$. *0*. **Solution.** We substitute $u = y' = \frac{dy}{dx}$. Then $y'' = \frac{du}{dx} = \frac{du}{dx} \cdot \frac{dy}{dx}$. $\frac{dy}{dx}$. Then $y'' = \frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u$. $\frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u.$ $\frac{du}{dy} \cdot u$. Therefore, our DE turns into $u\,\frac{\mathrm{d} u}{\mathrm{d} y} \!=\! 2 y u$. Dividing by u , we get $\frac{\mathrm{d}u}{\mathrm{d}y} \!=\! 2y$. [Note that we lose the solution $u \!=\! 0$, which gives the singular solution $y \!=\! C.$] Hence, $u=y^2+C$. It remains to solve $y'=y^2+C$. This is a separable DE. $\frac{1}{C+y^2}{\rm d}y={\rm d}x.$ Let us restrict to $C=D^2\!\geqslant\!0$ here. (This means we will only find "half" of the solutions.) $\int \frac{1}{D^2 + y^2} dy = \frac{1}{D^2} \int \frac{1}{1 + (y/D)^2} dy = \frac{1}{D} \arctan(y/D) = x + A.$ $\frac{1}{D}$ arctan(y/D) = $x + A$. Solving for *y*, we find $y = D \tan(Dx + AD) = D \tan(Dx + B)$. $[B = AD]$