Review. We can solve linear first-order DEs using integrating factors.

First, put the DE in standard form $y'+P(x)y=Q(x).$ Then $f(x)\!=\!\exp\!\!\left(\int\!P(x)\mathrm{d}x\right)$ is the integrating factor. The key is that we get on the left-hand side $f(x)y' + f(x)P(x)y = \frac{d}{dx}[f(x)y]$. We can therefore $\frac{d}{dx}[f(x)|y]$. We can therefore integrate both sides with respect to x (the right-hand side is $f(x)Q(x)$ which is just a function depending on x —not $y!$).

Example 32. Solve x^2 $y' = 1 - xy + 2x$, $y(1) = 3$.

Solution. This is a linear first-order DE. We can therefore solve it according to the recipe above.

- (a) Rewrite the DE as $\frac{dy}{dx} + P(x)y = Q(x)$ (standard form) with $P(x) = \frac{1}{x}$ and $Q(x) = \frac{1}{x^2} + \frac{2}{x}$. $\frac{1}{x}$ and $Q(x) = \frac{1}{x^2} + \frac{2}{x}$. *x* .
- (b) The integrating factor is $f(x) = \exp\left(\int P(x) dx\right) = e^{\ln x} = x$.

Here, we could write $\ln x$ instead of $\ln |x|$ because the initial condition tells us that $x > 0$, at least locally. Comment. We can also choose a different constant of integration but that would only complicate things.

(c) Multiply the DE (in standard form) by $f(x) = x$ to get

$$
x\frac{dy}{dx} + y = \frac{1}{x} + 2.
$$

=
$$
\frac{d}{dx}[xy]
$$

(d) Integrate both sides to get (again, we use that $x > 0$ to avoid having to use $|x|$)

$$
xy = \int \left(\frac{1}{x} + 2\right) dx = \ln x + 2x + C.
$$

Using $y(1) = 3$ to find *C*, we get $1 \cdot 3 = \ln(1) + 2 \cdot 1 + C$ which results in $C = 3 - 2 = 1$. Hence, the (unique) solution to the IVP is $y = \frac{\ln(x) + 2x + 1}{x}$. *x* .

Example 33. Solve $xy' = 2y + 1$, $y(-2) = 0$.

Solution. This is a linear first-order DE.

- (a) Rewrite the DE as $\frac{dy}{dx} + P(x)y = Q(x)$ (standard form) with $P(x) = -\frac{2}{x}$ and $Q(x) = \frac{1}{x}$. $\frac{2}{x}$ and $Q(x) = \frac{1}{x}$. *x* .
- (b) The integrating factor is $f(x) = \exp\left(\int P(x) dx\right) = e^{-2\ln|x|} = e^{-2\ln(-x)} = (-x)^{-2} = \frac{1}{x^2}$. *x*² .

Here, we used that, at least locally, $x < 0$ (because the initial condition is $x = -2 < 0$) so that $|x| = -x$.

(c) Multiply the DE (in standard form) by $f(x) = \frac{1}{x^2}$ to get

$$
\frac{\frac{1}{x^2}\frac{dy}{dx} - \frac{2}{x^3}y}{\frac{1}{x^4}\left(\frac{1}{x^2}y\right)} = \frac{1}{x^3}.
$$

(d) Integrate both sides to get

$$
\frac{1}{x^2} y = \int \frac{1}{x^3} dx = -\frac{1}{2x^2} + C.
$$

Hence, the general solution is $y(x) = -\frac{1}{2} + Cx^2$. . Solving $y(-2) = -\frac{1}{2} + 4C = 0$ for C yields $C = \frac{1}{8}$. Thus, the (unique) solutio $\frac{1}{8}$. Thus, the (unique) solution to the IVP is $y(x) = \frac{1}{8}x^2 - \frac{1}{2}$. 1 2 .

Armin Straub Armin Straub $\bf 15$ straub@southalabama.edu 15 **Example 34. (extra)** Solve $y' = 2y + 3x - 1$, $y(0) = 2$.

Solution. This is a linear first-order DE.

- (a) Rewrite the DE as $\frac{dy}{dx} + P(x)y = Q(x)$ (standard form) with $P(x) = -2$ and $Q(x) = 3x 1$.
- (b) The integrating factor is $f(x) = \exp\left(\int P(x) dx\right) = e^{-2x}$.
- (c) Multiply the DE (in standard form) by $f(x) = e^{-2x}$ to get

$$
e^{-2x}\frac{dy}{dx} - 2e^{-2x}y = (3x - 1)e^{-2x}.
$$

= $\frac{d}{dx}[e^{-2x}y]$

(d) Integrate both sides to get

$$
e^{-2x}y = \int (3x - 1)e^{-2x}dx
$$

= $3 \int xe^{-2x}dx - \int e^{-2x}dx$
= $3(-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}) - (-\frac{1}{2}e^{-2x}) + C$
= $-\frac{3}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + C.$

Here, we used that $\int xe^{-2x}dx = -\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x}dx = -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$ (for instance, via $\frac{1}{4}e^{-2x}$ (for instance, via integration by parts with $f(x) = x$ and $g'(x) = e^{-2x}$).

Hence, the general solution is $y(x) = -\frac{3}{2}x-\frac{1}{4}+Ce^{2x}.$ Solving $y(0) = -\frac{1}{4} + C = 2$ for *C* yields $C = \frac{9}{4}$. $\frac{3}{4}$. In conclusion, the (unique) solution to the IVP is $y(x) = -\frac{3}{2}x-\frac{1}{4}+\frac{9}{4}e^{2x}.$