
Notes for Lecture 7 Fri, 9/6/2024

Review. We can solve linear first-order DEs using integrating factors.

First, put the DE in standard form y 0+P (x)y=Q(x). Then f(x)=exp
�Z

P (x)dx

�
is the integrating factor.

The key is that we get on the left-hand side f(x)y0+ f(x)P (x)y= d

dx
[f(x) y]. We can therefore integrate both

sides with respect to x (the right-hand side is f(x)Q(x) which is just a function depending on x�not y!).

Example 32. Solve x2 y 0=1¡xy+2x, y(1)= 3.
Solution. This is a linear first-order DE. We can therefore solve it according to the recipe above.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)= 1

x
and Q(x)= 1

x2
+

2

x
.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= elnx= x.

Here, we could write lnx instead of lnjxj because the initial condition tells us that x>0, at least locally.
Comment. We can also choose a different constant of integration but that would only complicate things.

(c) Multiply the DE (in standard form) by f(x)= x to get

x
dy
dx

+ y

=
d

dx
[xy]

=
1
x
+2:

(d) Integrate both sides to get (again, we use that x> 0 to avoid having to use jxj)

xy=

Z �
1
x
+2

�
dx= lnx+2x+C:

Using y(1)= 3 to find C, we get 1 � 3= ln(1)+ 2 � 1+C which results in C =3¡ 2=1.

Hence, the (unique) solution to the IVP is y= ln(x)+ 2x+1

x
.

Example 33. Solve xy 0=2y+1, y(¡2)= 0.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2

x
and Q(x)= 1

x
.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2lnjxj= e¡2ln(¡x)=(¡x)¡2= 1

x2
.

Here, we used that, at least locally, x< 0 (because the initial condition is x=¡2< 0) so that jxj=¡x.

(c) Multiply the DE (in standard form) by f(x)= 1

x2
to get

1

x2
dy
dx
¡ 2

x3
y

=
d

dx

�
1

x2
y

� =
1

x3
:

(d) Integrate both sides to get
1

x2
y=

Z
1

x3
dx=¡ 1

2x2
+C:

Hence, the general solution is y(x)=¡1

2
+Cx2.

Solving y(¡2)=¡1

2
+4C =0 for C yields C =

1

8
. Thus, the (unique) solution to the IVP is y(x)= 1

8
x2¡ 1

2
.
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Example 34. (extra) Solve y 0=2y+3x¡ 1, y(0)= 2.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2 and Q(x)= 3x¡ 1.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2x.

(c) Multiply the DE (in standard form) by f(x)= e¡2x to get

e¡2x
dy
dx
¡ 2e¡2xy

=
d

dx
[e¡2xy]

=(3x¡ 1)e¡2x:

(d) Integrate both sides to get

e¡2xy =

Z
(3x¡ 1)e¡2xdx

= 3

Z
xe¡2xdx¡

Z
e¡2xdx

= 3

�
¡1
2
xe¡2x¡ 1

4
e¡2x

�
¡
�
¡1
2
e¡2x

�
+C

= ¡3
2
xe¡2x¡ 1

4
e¡2x+C:

Here, we used that
Z
xe¡2xdx = ¡1

2
xe¡2x +

1
2

Z
e¡2xdx = ¡1

2
xe¡2x ¡ 1

4
e¡2x (for instance, via

integration by parts with f(x)=x and g0(x)= e¡2x).

Hence, the general solution is y(x)=¡3

2
x¡1

4
+Ce2x.

Solving y(0)=¡1

4
+C =2 for C yields C =

9

4
.

In conclusion, the (unique) solution to the IVP is y(x)=¡3

2
x¡1

4
+
9

4
e2x.
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