Review. Existence and uniqueness theorem (Theorem [23\)](#page--1-0) for an IVP $y' = f(x, y)$, $y(a) = b$: If $f(x,y)$ and $\frac{\partial}{\partial y}f(x,y)$ are continuous around (a,b) then, locally, the IVP has a unique solution.

Example 29. Consider, again, the IVP $y' = -x/y$, $y(a) = b$.
Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is $y' = f(x, y)$ with $f(x, y) = -x/y$.

We compute that $\frac{\partial}{\partial y} f(x,y) \,{=}\, x \,/\, y^2.$.

We observe that both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all (x, y) $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$

Hence, if $b \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Comment. In Example [14,](#page--1-1) we found that the DE $y'=-x/y$ is solved by $y(x)\!=\!\pm\sqrt{D-x^2}.$.

Assume $b>0$ (things work similarly for $b<0$). Then $y(x)=\sqrt{D-x^2}$ solves the IVP (we need to choose D so that $y(a)=b)$ if we choose $D=a^2+b^2.$ This confirms that there exists a solution. On the other hand, uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case $b = 0$?

Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If $a \neq 0$, then $y(x)\!=\!\sqrt{a^2-x^2}$ and $y(x)\!=\!-\sqrt{a^2-x^2}$ both solve the IVP (so we certainly don't have uniqueness), however only in a weak sense: namely, both of these solutions are not valid locally around $x = a$ but only in an interval of which a is an endpoint (for instance, the IVP $y'=-x/y$, $y(2)=0$ is solved by $y(x)=\pm\sqrt{4-x^2}$ but both of these solutions are only valid on the interval [*¡*2*;* 2] which endsat 2, and neither of these solutions can be extended past 2).

Linear first-order DEs

A linear differential equation is one where the function *y* and its derivatives only show up linearly (i.e. there are no terms such as y^2 , $1/y$, $\sin(y)$ or $y \cdot y'$).

As such, the most general linear first-order DE is of the form

$$
A(x)y' + B(x)y + C(x) = 0.
$$

Such a DE can be rewritten in the following "standard form" by dividing by $A(x)$ and rearranging:

(linear first-order DE in standard form)

 $y' + P(x)y = Q(x)$

We will use this standard form when solving linear first-order DEs.

Example 30. (extra "warmup") Solve $\frac{dy}{dx} = 2xy^2$. 2 .

Solution. (separation of variables) $\frac{1}{y^2}\frac{dy}{dx} = 2x$, $-\frac{1}{y} = x^2 + C$. Hence the general solution is $y=\frac{1}{D_1-x^2}$. [There also is the sing $\frac{1}{D-x^2}$. [There also is the singular solution $y=0$.] Solution. (in other words) Note that $\frac{1}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$ can be written as $\frac{\mathrm{d}}{\mathrm{d}x}\Big[-\frac{1}{y}\Big]=\frac{\mathrm{d}}{\mathrm{d}x}[x^2].$ $\frac{d}{dx}[x^2]$. From there it follows that $-\frac{1}{y}\!=\!x^2+C$, as above.

We now use the idea of writing both sides as a derivative (which we then integrate!) to also solve DEs that are not separable. We will be able to handle all first-order linear DEs this way.

].

The multiplication by $\frac{1}{y^2}$ will be replaced by multiplication with a so-called **integrating factor**.

Example 31. Solve $y' = x - y$.

Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as $y' + y = x$.

Next, multiply both sides with e^x (we will see in a little bit how to find this "integrating factor") to get

$$
e^x y' + e^x y = x e^x.
$$

=
$$
\frac{d}{dx} [e^x y]
$$

The "magic" part is that we are able to realize the new left-hand side as a derivative! We can then integrate both sides to get

$$
e^x y = \int x e^x dx = x e^x - e^x + C.
$$

From here it follows that $y = x - 1 + Ce^{-x}$. ${\bf \textbf{Comment.}}$ For the final integral, we used that $\int xe^x\mathrm{d}x= xe^x-\int e^x\mathrm{d}x= xe^x-e^x+C$ which follows, for instance, via integration by parts (with $f(x)\!=\!x$ and $g'(x)\!=\!e^x$ in the formula reviewed below).

Review. The multiplication rule $(fg)' = f'g + fg'$ implies $fg = \int f'g + \int fg'$. $\int_{\mathbb{R}^d} f(x) dx$ $f'g + \int fg'$. $\int_{\mathbb{R}^2}$ and $\int_{\mathbb{R}^2}$ fg' The latter is equivalent to integration by parts:

$$
\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx
$$

Comment. Sometimes, one writes $g'(x)dx = dg(x)$.

In general, we can solve any **linear first-order DE** $y' + P(x)y = Q(x)$ in this way.

We want to multiply with an **integrating factor** $f(x)$ such that the left-hand side of the DE becomes

$$
f(x)y' + f(x)P(x)y = \frac{d}{dx}[f(x)y].
$$

Since $\frac{d}{dx}[f(x)y] = f(x)y$ $\frac{d}{dx}[f(x)y] = f(x)y' + f'(x)y$, we need $f'(x) = f(x)P(x)$ for that.

• Check that $f(x) = \exp\left(\int P(x) dx\right)$ has this property.

Comment. This follows directly from computing the derivative of this $f(x)$ via the chain rule. Homework. On the other hand, note that finding f meant solving the DE $f'=P(x)\;f.$ This is a separable DE. Solve it by separation of variables to arrive at the above formula for $f(x)$ yourself. Just to make sure. There is no difference between $\exp(x)$ and e^x . Here, we prefer the former notation for typographical reasons.

With that integrating factor, we have the following recipe for solving any linear first-order equation:

(solving linear first-order DEs)

- (a) Write the DE in the **standard form** $y' + P(x)y = Q(x)$.
- (b) Compute the **integrating factor** as $f(x) = \exp\left(\int P(x) dx\right)$.

[We can choose any constant of integration.]

(c) Multiply the DE from part [\(a\)](#page-2-0) by $f(x)$ to get

$$
\frac{f(x)y' + f(x)P(x)y}{\frac{d}{dx}[f(x)y]} = f(x)Q(x).
$$

.

(d) Integrate both sides to get

$$
f(x)y = \int f(x)Q(x)dx + C.
$$

Then solve for y by dividing by $f(x)$.

Comment. For better understanding, we prefer to go through the above steps. On the other hand, we can combine these steps into the following formula for the general solution of $y' + P(x)y = Q(x)$:

$$
y = \frac{1}{f(x)} \bigg(\int f(x)Q(x)dx + C \bigg) \quad \text{where } f(x) = e^{\int P(x)dx}
$$

Existence and uniqueness. Note that the solution we construct exists on any interval on which *P* and *Q* are continuous (not just on some possibly very small interval). This is better than what the existence and uniqueness theorem (Theorem [23\)](#page--1-0) can guarantee. This is one of the many ways in which linear DEs have particularly nice properties compared to DEs in general.