Reminder. No notes, calculators or tools of any kind will be permitted on the midterm exam.

Problem 1. Let L be a linear differential operator of order 4 with constant real coefficients. Suppose that $3+7 i$ is a repeated characteristic root of L.
(a) What is the general solution to $L y=0$?
(b) Write down the simplest form of a particular solution y_{p} of the $\mathrm{DE} L y=7 x^{2} e^{3 x}$ with undetermined coefficients.
(c) Write down the simplest form of a particular solution y_{p} of the $\mathrm{DE} L y=e^{3 x} \sin (7 x)+3 x^{2}$ with undetermined coefficients.

Problem 2. Consider a homogeneous linear differential equation with constant real coefficients which has order 8.
(a) Suppose $y(x)=7 x-2 x^{2} e^{3 x} \sin (5 x)$ is a solution. Write down the general solution.
(b) Suppose $y(x)=2 x e^{3 x}+x \cos (5 x)-5 \sin (x)$ is a solution. Write down the general solution.

Problem 3.

(a) Determine the general solution of the system $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}\end{aligned}$.
(b) Solve the IVP $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}\end{aligned}$ with $\begin{aligned} & y_{1}(0)=4 \\ & y_{2}(0)=1\end{aligned}$.
(c) Determine a particular solution to $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}-2 e^{3 x} \text {. }\end{aligned}$
(d) Determine the general solution to $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}-2 e^{3 x} \text {. }\end{aligned}$

Problem 4.

(a) Write the (third-order) differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}+5 y=2 \sin (x)$ as a system of (first-order) differential equations.
(b) Consider the following system of (second-order) initial value problems:

$$
\begin{aligned}
& y_{1}^{\prime \prime}=5 y_{1}^{\prime}+2 y_{2}^{\prime}+e^{2 x} \\
& y_{2}^{\prime \prime}=7 y_{1}-3 y_{2}-3 e^{x}
\end{aligned} \quad y_{1}(0)=1, y_{1}^{\prime}(0)=4, y_{2}(0)=0, y_{2}^{\prime}(0)=-1
$$

Write it as a first-order initial value problem in the form $\boldsymbol{y}^{\prime}=M \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{c}$.

Problem 5. The mixtures in three tanks T_{1}, T_{2}, T_{3} are kept uniform by stirring. Brine containing 2 lb of salt per gallon enters the first tank at a rate of $15 \mathrm{gal} / \mathrm{min}$. Mixed solution from T_{1} is pumped into T_{2} at a rate of $10 \mathrm{gal} / \mathrm{min}$ and from T_{2} into T_{3} at a rate of $10 \mathrm{gal} / \mathrm{min}$. Each tank initially contains 10 gal of pure water. Denote by $y_{i}(t)$ the amount (in pounds) of salt in tank T_{i} at time t (in minutes). Derive a system of linear differential equations for the y_{i}, including initial conditions.

Problem 6.

(a) What is the period and the amplitude of $3 \cos (7 t)-5 \sin (7 t)$?
(b) Assume that the angle $\theta(t)$ of a swinging pendulum is described by $\theta^{\prime \prime}+4 \theta=0$. Suppose $\theta(0)=\frac{3}{10}$ and $\theta^{\prime}(0)=-\frac{4}{5}$. What is the period and the amplitude of the resulting oscillations?
(c) The position $y(t)$ of a certain mass on a spring is described by $y^{\prime \prime}+d y^{\prime}+5 y=0$. For which value of $d>0$ is the system underdamped? Critically damped? Overdamped?
(d) A forced mechanical oscillator is described by $y^{\prime \prime}+2 y^{\prime}+y=25 \cos (2 t)$. As $t \rightarrow \infty$, what is the period and the amplitude of the resulting oscillations?
(e) The motion of a certain mass on a spring is described by $y^{\prime \prime}+y^{\prime}+\frac{1}{2} y=5 \sin (t)$ with $y(0)=2$ and $y^{\prime}(0)=0$. Determine $y(t)$. As $t \rightarrow \infty$, what are the period and amplitude of the oscillations?

Problem 7. The position $y(t)$ of a certain mass on a spring is described by $2 y^{\prime \prime}+d y^{\prime}+3 y=F \sin (4 \omega t)$.
(a) Assume first that there is no external force, i.e. $F=0$. For which values of d is the system overdamped?
(b) Now, $F \neq 0$ and the system is undamped, i.e. $d=0$. For which values of ω, if any, does resonance occur?

Problem 8.

(a) Determine the general solution to $y^{\prime \prime}-4 y^{\prime}+4 y=3 e^{2 x}$.
(b) Determine the general solution to the differential equation $y^{\prime \prime \prime}-y=e^{x}+7$.
(c) Determine the general solution $y(x)$ to the differential equation $y^{(4)}+6 y^{\prime \prime \prime}+13 y^{\prime \prime}=2$. Express the solution using real numbers only.
(d) Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+y=2 e^{2 x}+e^{-x}, y(0)=-1, y^{\prime}(0)=2$.

Problem 9.

(a) Consider the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$. Find all solutions of the form $y(x)=x^{r}$.
(b) Determine the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{3}$.

