Reminder. No notes, calculators or tools of any kind will be permitted on the midterm exam.

Problem 1. Let L be a linear differential operator of order 4 with constant real coefficients. Suppose that $3+7 i$ is a repeated characteristic root of L.
(a) What is the general solution to $L y=0$?
(b) Write down the simplest form of a particular solution y_{p} of the DE $L y=7 x^{2} e^{3 x}$ with undetermined coefficients.
(c) Write down the simplest form of a particular solution y_{p} of the $\mathrm{DE} L y=e^{3 x} \sin (7 x)+3 x^{2}$ with undetermined coefficients.

Solution.

(a) Since L is real, if $3+7 i$ is a repeated characteristic root of L, then $3-7 i$ must be a repeated characteristic root of L as well. Hence, the 4 characteric roots must be $3 \pm 7 i, 3 \pm 7 i$.
The corresponding general solution is $\left(C_{1}+C_{2} x\right) e^{3 x} \cos (7 x)+\left(C_{3}+C_{4} x\right) e^{3 x} \sin (7 x)$.
(b) The "old" roots are $3 \pm 7 i, 3 \pm 7 i$ while the "new" roots are $3,3,3$.

Hence, there must a particular solution of the form $y_{p}=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{3 x}$.
The unique values of C_{1}, C_{2}, C_{3} for which this is a solution of the DE need to be determined by plugging into the DE .
(c) The "old" roots are $3 \pm 7 i, 3 \pm 7 i$ while the "new" roots are $3 \pm 7 i, 0,0,0$.

Hence, there must a particular solution of the form $C_{1} x^{2} e^{3 x} \cos (7 x)+C_{2} x^{2} e^{3 x} \sin (7 x)+C_{3}+C_{4} x+C_{5} x^{2}$.
The unique values of $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ for which this is a solution of the DE need to be determined by plugging into the DE.

Problem 2. Consider a homogeneous linear differential equation with constant real coefficients which has order 8.
(a) Suppose $y(x)=7 x-2 x^{2} e^{3 x} \sin (5 x)$ is a solution. Write down the general solution.
(b) Suppose $y(x)=2 x e^{3 x}+x \cos (5 x)-5 \sin (x)$ is a solution. Write down the general solution.

Solution.

(a) The characteristic roots must include $0,0,3 \pm 5 i, 3 \pm 5 i, 3 \pm 5 i$. Since these are 8 roots and the DE has order 8 , there cannot be any additional roots.

Hence, the general solution is $C_{1}+C_{2} x+\left(C_{3}+C_{4} x+C_{5} x^{2}\right) e^{3 x} \cos (5 x)+\left(C_{6}+C_{7} x+C_{8} x^{2}\right) e^{3 x} \sin (5 x)$.
(b) The characteristic roots must include $3,3, \pm 5 i, \pm 5 i, \pm i$. Since these are 8 roots and the DE has order 8 , there cannot be any additional roots.
Hence, the general solution is $\left(C_{1}+C_{2} x\right) e^{3 x}+\left(C_{3}+C_{4} x\right) \cos (5 x)+\left(C_{5}+C_{6} x\right) \sin (5 x)+C_{7} \cos (x)+C_{8} \sin (x)$.

Problem 3.

(a) Determine the general solution of the system $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}\end{aligned}$.
(b) Solve the IVP $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}\end{aligned}$ with $\begin{aligned} & y_{1}(0)=4 \\ & y_{2}(0)=1\end{aligned}$.
(c) Determine a particular solution to $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}-2 e^{3 x} \text {. }\end{aligned}$
(d) Determine the general solution to $\begin{aligned} & y_{1}^{\prime}=y_{1}-6 y_{2} \\ & y_{2}^{\prime}=y_{1}-4 y_{2}-2 e^{3 x} \text {. }\end{aligned}$

Solution.

(a) Using $y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)$ (from the first equation) in the second equation, we get $\frac{1}{6}\left(y_{1}^{\prime}-y_{1}^{\prime \prime}\right)=y_{1}-\frac{4}{6}\left(y_{1}-y_{1}^{\prime}\right)$.

Simplified (and both sides multiplied by -6), this is $y_{1}^{\prime \prime}+3 y_{1}^{\prime}+2 y_{1}=0$.
This is a homogeneous linear DE with constant coefficients. The characteristic roots are $-1,-2$.
Hence, $y_{1}=C_{1} e^{-x}+C_{2} e^{-2 x}$.
We can then determine y_{2} as $y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)=\frac{1}{6}\left(C_{1} e^{-x}+C_{2} e^{-2 x}-\left(-C_{1} e^{-x}-2 C_{2} e^{-2 x}\right)\right)=\frac{1}{3} C_{1} e^{-x}+\frac{1}{2} C_{2} e^{-2 x}$.
(b) From the previous part, we know $y_{1}=C_{1} e^{-x}+C_{2} e^{-2 x}$ and $y_{2}=\frac{1}{3} C_{1} e^{-x}+\frac{1}{2} C_{2} e^{-2 x}$.

We solve for C_{1} and C_{2} using the initial conditions: $y_{1}(0)=C_{1}+C_{2} \stackrel{!}{=} 4$ and $y_{2}(0)=\frac{1}{3} C_{1}+\frac{1}{2} C_{2} \stackrel{!}{=} 1$.
Solving these two equations, we find $C_{1}=6$ and $C_{2}=-2$.
Thus, the unique solution to the IVP is $y_{1}=6 e^{-x}-2 e^{-2 x}$ and $y_{2}=2 e^{-x}-e^{-2 x}$.
(c) We proceed as in the first part to write $y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)$.

Using this in the second equation and simplifying, we get $y_{1}^{\prime \prime}+3 y_{1}^{\prime}+2 y_{1}=12 e^{3 x}$.
This is an inhomogeneous linear DE with constant coefficients. Since the "old" roots are $-1,-2$, while the "new" root is 3 , there must a particular solution of the form $y_{1}=C e^{3 x}$ with undetermined coefficient C. To determine C, we plug this y_{1} into the DE: $y_{1}^{\prime \prime}+3 y_{1}^{\prime}+2 y_{1}=(9+3 \cdot 3+2) C e^{3 x}=20 C e^{3 x} \stackrel{!}{=} 12 e^{3 x}$. Hence, $C=\frac{3}{5}$.
Having found $y_{1}=\frac{3}{5} e^{3 x}$, we can then determine y_{2} as $y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)=\frac{1}{6}\left(\frac{3}{5} e^{3 x}-\frac{9}{5} e^{3 x}\right)=-\frac{1}{5} e^{3 x}$.
(d) We get the general solution by adding the particular solution (previous part) and the general solution to the corresponding homogeneous equation (first part):

Hence, the general solution is $y_{1}=\frac{3}{5} e^{3 x}+C_{1} e^{-x}+C_{2} e^{-2 x}$ and $y_{2}=-\frac{1}{5} e^{3 x}+\frac{1}{3} C_{1} e^{-x}+\frac{1}{2} C_{2} e^{-2 x}$.
Alternatively. Here is a solution that proceeds from scratch (rather than referring to previous parts):
Using $y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)$ (from the first equation) in the second equation, we get $\frac{1}{6}\left(y_{1}^{\prime}-y_{1}^{\prime \prime}\right)=y_{1}-\frac{4}{6}\left(y_{1}-y_{1}^{\prime}\right)-2 e^{3 x}$.
Simplified (and both sides multiplied by -6), this is $y_{1}^{\prime \prime}+3 y_{1}^{\prime}+2 y_{1}=12 e^{3 x}$.
This is an inhomogeneous linear DE with constant coefficients. Since the "old" roots are $-1,-2$, while the "new" root is 3 , there must a particular solution of the form $y_{1}=C e^{3 x}$ with undetermined coefficient C. To determine C, we plug this y_{1} into the DE: $y_{1}^{\prime \prime}+3 y_{1}^{\prime}+2 y_{1}=(9+3 \cdot 3+2) C e^{3 x}=20 C e^{3 x} \stackrel{!}{=} 12 e^{3 x}$. Hence, $C=\frac{3}{5}$ and the particular solution is $y_{1}=\frac{3}{5} e^{3 x}$. The corresponding general solution is $y_{1}=\frac{3}{5} e^{3 x}+C_{1} e^{-x}+C_{2} e^{-2 x}$.
We can then determine y_{2} as follows:
$y_{2}=\frac{1}{6}\left(y_{1}-y_{1}^{\prime}\right)=\frac{1}{6}\left(\frac{3}{5} e^{3 x}+C_{1} e^{-x}+C_{2} e^{-2 x}-\left(\frac{9}{5} e^{3 x}-C_{1} e^{-x}-2 C_{2} e^{-2 x}\right)\right)=-\frac{1}{5} e^{3 x}+\frac{1}{3} C_{1} e^{-x}+\frac{1}{2} C_{2} e^{-2 x}$.

Problem 4.

(a) Write the (third-order) differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}+5 y=2 \sin (x)$ as a system of (first-order) differential equations.
(b) Consider the following system of (second-order) initial value problems:

$$
\begin{aligned}
& y_{1}^{\prime \prime}=5 y_{1}^{\prime}+2 y_{2}^{\prime}+e^{2 x} \\
& y_{2}^{\prime \prime}=7 y_{1}-3 y_{2}-3 e^{x}
\end{aligned} \quad y_{1}(0)=1, y_{1}^{\prime}(0)=4, y_{2}(0)=0, y_{2}^{\prime}(0)=-1
$$

Write it as a first-order initial value problem in the form $\boldsymbol{y}^{\prime}=M \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{c}$.

Solution.

(a) Write $y_{1}=y, y_{2}=y^{\prime}$ and $y_{3}=y^{\prime \prime}$.

Then, the DE translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=y_{3} \\ y_{3}^{\prime}=-5 y_{1}+4 y_{2}-2 y_{3}+2 \sin (x)\end{array}\right.$.
In matrix form, with $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & 4 & -2\end{array}\right] \boldsymbol{y}+\left[\begin{array}{c}0 \\ 0 \\ 2 \sin (x)\end{array}\right]$.
(b) Introduce $y_{3}=y_{1}^{\prime}$ and $y_{4}=y_{2}^{\prime}$. Then, with $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, the given system translates into

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 5 & 2 \\
7 & -3 & 0 & 0
\end{array}\right] \boldsymbol{y}+\left[\begin{array}{c}
0 \\
0 \\
e^{2 x} \\
-3 e^{x}
\end{array}\right], \quad \boldsymbol{y}(0)=\left[\begin{array}{c}
1 \\
0 \\
4 \\
-1
\end{array}\right]
$$

Problem 5. The mixtures in three tanks T_{1}, T_{2}, T_{3} are kept uniform by stirring. Brine containing 2 lb of salt per gallon enters the first tank at a rate of $15 \mathrm{gal} / \mathrm{min}$. Mixed solution from T_{1} is pumped into T_{2} at a rate of $10 \mathrm{gal} / \mathrm{min}$ and from T_{2} into T_{3} at a rate of $10 \mathrm{gal} / \mathrm{min}$. Each tank initially contains 10 gal of pure water. Denote by $y_{i}(t)$ the amount (in pounds) of salt in tank T_{i} at time t (in minutes). Derive a system of linear differential equations for the y_{i}, including initial conditions.

Solution. Note that at time t, T_{1} contains $10+15 t-10 t=10+5 t$ gal of solution. On the other hand, T_{2} contains a constant amount of 10 gal, and $T_{3} 10+10 t$ gal of solution.

In the time interval $[t, t+\Delta t]$, we have:

$$
\begin{aligned}
\Delta y_{1} \approx 15 \cdot 2 \cdot \Delta t-10 \cdot \frac{y_{1}}{10+5 t} \cdot \Delta t & \Longrightarrow \quad y_{1}^{\prime}=30-\frac{2 y_{1}}{2+t} \\
\Delta y_{2} \approx 10 \cdot \frac{y_{1}}{10+5 t} \cdot \Delta t-10 \cdot \frac{y_{2}}{10} \cdot \Delta t \quad & \Longrightarrow \quad y_{2}^{\prime}=\frac{2 y_{1}}{2+t}-y_{2} \\
\Delta y_{3} \approx 10 \cdot \frac{y_{2}}{10} \cdot \Delta t & \Longrightarrow \quad y_{3}^{\prime}=y_{2}
\end{aligned}
$$

We also have the initial conditions $y_{1}(0)=0, y_{2}(0)=0, y_{3}(0)=0$. In matrix form, writing $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$, this is

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}
-\frac{2}{2+t} & 0 & 0 \\
\frac{2}{2+t} & -1 & 0 \\
0 & 1 & 0
\end{array}\right] \boldsymbol{y}+\left[\begin{array}{c}
30 \\
0 \\
0
\end{array}\right], \quad \boldsymbol{y}(0)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This is a system of linear inhomogeneous differential equations with non-constant coefficients.
Comment. Because of its particularly simple structure, we actually have the techniques to solve this system. Namely, note that the first equation only involves y_{1}. It is a linear first-order equation which we could therefore solve using an integrating factor. With y_{1} determined, the second differential equation only involves y_{2} and is, again, a linear firstorder equation. Solving it for y_{2}, we then get y_{3} by a final integration.

Problem 6.

(a) What is the period and the amplitude of $3 \cos (7 t)-5 \sin (7 t)$?
(b) Assume that the angle $\theta(t)$ of a swinging pendulum is described by $\theta^{\prime \prime}+4 \theta=0$. Suppose $\theta(0)=\frac{3}{10}$ and $\theta^{\prime}(0)=-\frac{4}{5}$. What is the period and the amplitude of the resulting oscillations?
(c) The position $y(t)$ of a certain mass on a spring is described by $y^{\prime \prime}+d y^{\prime}+5 y=0$. For which value of $d>0$ is the system underdamped? Critically damped? Overdamped?
(d) A forced mechanical oscillator is described by $y^{\prime \prime}+2 y^{\prime}+y=25 \cos (2 t)$. As $t \rightarrow \infty$, what is the period and the amplitude of the resulting oscillations?
(e) The motion of a certain mass on a spring is described by $y^{\prime \prime}+y^{\prime}+\frac{1}{2} y=5 \sin (t)$ with $y(0)=2$ and $y^{\prime}(0)=0$. Determine $y(t)$. As $t \rightarrow \infty$, what are the period and amplitude of the oscillations?

Solution.

(a) The period is $2 \pi / 7$ and the amplitude is $\sqrt{3^{2}+(-5)^{2}}=\sqrt{34}$.
(b) The characteristic equation has roots $\pm 2 i$. Hence, the general solution to the DE is $\theta(t)=A \cos (2 t)+B \sin (2 t)$.

We use the initial conditions to determine A and $B: \theta(0)=A=\frac{3}{10} . \theta^{\prime}(0)=2 B=-\frac{4}{5}$.
Hence, the unique solution to the IVP is $\theta(t)=\frac{3}{10} \cos (2 t)-\frac{2}{5} \sin (2 t)$.

In particular, the period is π and the amplitude is $\sqrt{A^{2}+B^{2}}=\sqrt{\frac{9}{100}+\frac{16}{100}}=\frac{1}{2}$.
(c) The characteristic equation has roots $\frac{1}{2}\left(-d \pm \sqrt{d^{2}-20}\right)$. The system is underdamped if the solutions involve oscillations, which happens if and only if $d^{2}-20$ (the discriminant) is negative.
Since $d^{2}-20<0$ if $d<\sqrt{20}$, the system is underdamped for $d \in(0, \sqrt{20})$.
Correspondingly, the system is critically damped for $d=\sqrt{20}$ and overdamped for $d>\sqrt{20}$.
(d) The "old" roots are $-1,-1$ while the "new" roots are $\pm 2 i$. Since they don't overlap, there must be a particular solution y_{p} of the form $y_{p}=A \cos (2 t)+B \sin (2 t)$.
We plug into the DE to find $y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p}=(-4 A+4 B+A) \cos (2 t)+(-4 B-4 A+B) \sin (2 t) \stackrel{!}{=} 25 \cos (2 t)$.
Comparing coefficients, we get $-3 A+4 B=25$ and $-3 B-4 A=0$. Solving these, we find $A=-3$ and $B=4$.
Hence, $y_{p}(t)=-3 \cos (2 t)+4 \sin (2 t)$ and the general solution is $y(t)=-3 \cos (2 t)+4 \sin (2 t)+\left(C_{1}+C_{2} x\right) e^{-t}$.
As $t \rightarrow \infty$, we have $e^{-t} \rightarrow \infty$ so that $y(t) \approx-3 \cos (2 t)+4 \sin (2 t)$.
In particular, the period is π and the amplitude is $\sqrt{(-3)^{2}+4^{2}}=5$.
(e) The "old" roots are $\frac{-2 \pm \sqrt{4-8}}{4}=-\frac{1}{2} \pm \frac{1}{2} i$ while the "new" roots are $\pm i$. Since there is no overlap, there must be a particular solution y_{p} of form $y_{p}=A \cos (t)+B \sin (t)$. By plugging into DE , we find $A=-4, B=-2$.

Hence, the general solution is $y(t)=-4 \cos (t)-2 \sin (t)+e^{-t / 2}\left(C_{1} \cos (t / 2)+C_{2} \sin (t / 2)\right)$.
We determine C_{1} and C_{2} using the initial conditions. From $y(0)=-4+C_{1} \stackrel{!}{=} 2$, we conclude $C_{1}=6$. We then compute $y^{\prime}(t)=4 \sin (t)-2 \cos (t)-\frac{1}{2} e^{-t / 2}\left(C_{1} \cos (t / 2)+C_{2} \sin (t / 2)\right)+e^{-t / 2}\left(-\frac{1}{2} C_{1} \sin (t / 2)+\frac{1}{2} C_{2} \cos (t / 2)\right)$. Hence, $y^{\prime}(0)=-2-\frac{1}{2} C_{1}+\frac{1}{2} C_{2} \stackrel{!}{=} 0$, from which we conclude that $C_{2}=10$.
Therefore, the unique solution to the IVP is $y(t)=-4 \cos (t)-2 \sin (t)+e^{-t / 2}(6 \cos (t / 2)+10 \sin (t / 2))$.
For large $t, y(t) \approx-4 \cos (t)-2 \sin (t)\left(\right.$ since $\left.e^{-t / 2} \rightarrow 0\right)$. Hence, the period is 2π and the amplitude is $\sqrt{4^{2}+2^{2}}=$ $\sqrt{20}$.

Problem 7. The position $y(t)$ of a certain mass on a spring is described by $2 y^{\prime \prime}+d y^{\prime}+3 y=F \sin (4 \omega t)$.
(a) Assume first that there is no external force, i.e. $F=0$. For which values of d is the system overdamped?
(b) Now, $F \neq 0$ and the system is undamped, i.e. $d=0$. For which values of ω, if any, does resonance occur?

Solution.

(a) The discriminant of the characteristic equation is $d^{2}-24$. Hence the system is overdamped if $d^{2}-24>0$, that is $d>\sqrt{24}=2 \sqrt{6}$.
(b) The natural frequency is $\sqrt{\frac{3}{2}}$. Resonance therefore occurs if $4 \omega=\sqrt{\frac{3}{2}}$ or, equivalently, $\omega=\frac{1}{4} \sqrt{\frac{3}{2}}$.

Problem 8.

(a) Determine the general solution to $y^{\prime \prime}-4 y^{\prime}+4 y=3 e^{2 x}$.
(b) Determine the general solution to the differential equation $y^{\prime \prime \prime}-y=e^{x}+7$.
(c) Determine the general solution $y(x)$ to the differential equation $y^{(4)}+6 y^{\prime \prime \prime}+13 y^{\prime \prime}=2$. Express the solution using real numbers only.
(d) Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+y=2 e^{2 x}+e^{-x}, y(0)=-1, y^{\prime}(0)=2$.

Solution.

(a) The characteristic equation for the corresponding homogeneous DE has roots 2,2 ("old" roots). The right-hand side solves a DE whose characteristic equation has root 2 ("new" root). Hence, by the method of undetermined coefficients, there must be a particular solution of the form $y_{p}=A x^{2} e^{2 x}$.
To determine A, we plug into the DE using $y_{p}^{\prime}=2 A\left(x+x^{2}\right) e^{2 x}$ and $y_{p}^{\prime \prime}=2 A\left(1+4 x+2 x^{2}\right) e^{2 x}$: $y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=\left[2 A\left(1+4 x+2 x^{2}\right)-8 A\left(x+x^{2}\right)+4 A x^{2}\right] e^{2 x}=2 A e^{2 x} \stackrel{!}{=} 3 e^{2 x}$. Hence, $A=\frac{3}{2}$ so that $y_{p}=\frac{3}{2} x^{2} e^{2 x}$.
Accordingly, the general solution is $y(x)=\left(C_{1}+C_{2} x+\frac{3}{2} x^{2}\right) e^{2 x}$.
(b) Let us first solve the homogeneous equation $y^{\prime \prime \prime}-y=0$. Its characteristic polynomial $D^{3}-1=(D-1)\left(D^{2}+\right.$ $D+1$) has roots 1 and $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ ("old" roots). The right-hand side solves a DE whose characteristic equation has roots 0,1 ("new" roots).
Noting the repetition of the root 1 , by the method of undetermined coefficients, there must be a particular solution of the form $y_{p}=A x e^{x}+B$.
$y_{p}^{\prime}=A(x+1) e^{x}, y_{p}^{\prime \prime}=A(x+2) e^{x}, y_{p}^{\prime \prime \prime}=A(x+3) e^{x}$
Plugging into the DE , we get $y_{p}^{\prime \prime \prime}-y_{p}=3 A e^{x}-B \stackrel{!}{=} e^{x}+7$. Consequently, $A=\frac{1}{3}, B=-7$ so that $y_{p}=-7+\frac{1}{3} x e^{x}$.
Hence, the general solution is $y(x)=-7+\left(C_{1}+\frac{1}{3} x\right) e^{x}+C_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3}}{2} x\right)+C_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3}}{2} x\right)$.
(c) Since $D^{4}+6 D^{3}+13 D^{2}=D^{2}\left(D^{2}+6 D+13\right)$, the characteristic equation for the corresponding homogeneous DE has roots $0,0,-3 \pm 2 i$ ("old" roots). The right-hand side solves a DE whose characteristic equation has root 0 ("new" root). Hence, by the method of undetermined coefficients, there must be a particular solution of the form $y_{p}=A x^{2}$.
Plugging into the DE , we get $y_{p}^{(4)}+6 y_{p}^{\prime \prime \prime}+13 y_{p}^{\prime \prime}=26 A \stackrel{!}{=} 2$. Thus $A=\frac{1}{13}$ so that $y_{p}=\frac{1}{13} x^{2}$.
Hence, the general solution is $y(x)=\frac{1}{13} x^{2}+C_{1}+C_{2} x+C_{3} e^{-3 x} \cos (2 x)+C_{4} e^{-3 x} \sin (2 x)$.
(d) The characteristic equation for the associated homogeneous DE has roots $-1,-1$ (the "old" roots). The righthand side solves a DE whose characteristic equation has roots $-1,2$ (the "new" roots).
Hence, by the method of undetermined coefficients, there must be a particular solution of the form $y_{p}=$ $A e^{2 x}+B x^{2} e^{-x}$. To find A, B we plug into the DE. [...] We find $A=\frac{2}{9}$ and $B=\frac{1}{2}$.
Particular solution: $y_{p}=\frac{2}{9} e^{2 x}+\frac{1}{2} x^{2} e^{-x}$
General solution: $y=\frac{2}{9} e^{2 x}+\frac{1}{2} x^{2} e^{-x}+C_{1} e^{-x}+C_{2} x e^{-x}$
Now, we use the initial values [...], to find $y(x)=\frac{2}{9} e^{2 x}+\frac{1}{2} x^{2} e^{-x}-\frac{11}{9} e^{-x}+\frac{1}{3} x e^{-x}$.

Problem 9.

(a) Consider the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$. Find all solutions of the form $y(x)=x^{r}$.
(b) Determine the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{3}$.

Solution.

(a) Plugging $y(x)=x^{r}$ into the DE, we get $x^{2} r(r-1) x^{r-2}-4 x r x^{r-1}+6 x^{r}=[r(r-1)-4 r+6] x^{r} \stackrel{!}{=} 0$.

Since $r(r-1)-4 r+6=(r-2)(r-3)$, we find the solutions x^{2} and x^{3}. Since this is a second-order equation and our solutions are independent, there can be no further solutions.
(b) We can find a particular solution to this inhomogeneous DE using the method of variation of parameters/constants. From the first part, we know that the corresponding homogeneous DE has the solutions $y_{1}=x^{2}, y_{2}=x^{3}$. The Wronskian of these is $W(x)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=x^{4}$.
Put the DE in the form $y^{\prime \prime}-4 x^{-1} y^{\prime}+6 x^{-2} y=f(x)$ with $f(x)=x$. Then, by the method of variation of parameters, a particular solution is given by

$$
y_{p}=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)} \mathrm{d} x+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)} \mathrm{d} x=-x^{2} \int 1 \mathrm{~d} x+x^{3} \int \frac{1}{x} \mathrm{~d} x=-x^{3}+x^{3} \ln |x| .
$$

Hence, the general solution is $y(x)=C_{1} x^{2}+\left(C_{2}+\ln |x|\right) x^{3}$.

