
Notes for Lecture 37 Mon, 12/4/2023

Hyperbolic sine and cosine

Review. Euler's formula states that eit= cos(t)+ i sin(t).

Recall that a function f(t) is even if f(¡t)= f(t). Likewise, it is odd if f(¡t)=¡t.
Note that f(t) = tn is even if and only if n is even. Likewise, f(t) = tn is odd if and only if n is odd. That's
where the names are coming from.

Any function f(t) can be decomposed into an even and an odd part as follows:

f(t)= feven(t)+ fodd(t); feven(t)=
1
2
(f(t)+ f(¡t)); fodd(t)=

1
2
(f(t)¡ f(¡t)):

Verify that feven(t) indeed is even, and that fodd(t) indeed is an odd function (regardless of f(t)).

Example 159. The hyperbolic cosine, denoted cosh(t), is the even part of et. Likewise, the
hyperbolic sine, denoted sinh(t), is the odd part of et.

� Equivalently, cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

� In particular, et= cosh(t)+ sinh(t).
As recalled above, any function is the sum of its even and odd part.
Comparing with Euler's formula, we find cosh(it)= cos(t) and sinh(it)= i sin(t). This indicates that
cosh and sinh are related to cos and sin, as their name suggests (see below for the �hyperbolic� part).

� d

dt
cosh(t)= sinh(t) and d

dt
sinh(t)= cosh(t).

� cosh(t) and sinh(t) both satisfy the DE y 00= y.
We can write the general solution as C1et+C2e¡t or, if useful, as C1 cosh(t)+C2 sinh(t).

� cosh(t)2¡ sinh(t)2=1
Verify this by substituting cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

Note that the equation x2¡ y2=1 describes a hyperbola (just like x2+ y2=1 describes a circle).

The above equation is saying that
�
x
y

�
=
�
cosh(t)
sinh(t)

�
is a parametrization of the hyperbola.

Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).
Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

Homework. Write down the parallel properties of cosine and sine.
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