## Hyperbolic sine and cosine

Review. Euler's formula states that $e^{i t}=\cos (t)+i \sin (t)$.
Recall that a function $f(t)$ is even if $f(-t)=f(t)$. Likewise, it is odd if $f(-t)=-t$.
Note that $f(t)=t^{n}$ is even if and only if $n$ is even. Likewise, $f(t)=t^{n}$ is odd if and only if $n$ is odd. That's where the names are coming from.
Any function $f(t)$ can be decomposed into an even and an odd part as follows:

$$
f(t)=f_{\text {even }}(t)+f_{\text {odd }}(t), \quad f_{\text {even }}(t)=\frac{1}{2}(f(t)+f(-t)), \quad f_{\text {odd }}(t)=\frac{1}{2}(f(t)-f(-t))
$$

Verify that $f_{\text {even }}(t)$ indeed is even, and that $f_{\text {odd }}(t)$ indeed is an odd function (regardless of $f(t)$ ).

Example 159. The hyperbolic cosine, denoted $\cosh (t)$, is the even part of $e^{t}$. Likewise, the hyperbolic sine, denoted $\sinh (t)$, is the odd part of $e^{t}$.

- Equivalently, $\cosh (t)=\frac{1}{2}\left(e^{t}+e^{-t}\right)$ and $\sinh (t)=\frac{1}{2}\left(e^{t}-e^{-t}\right)$.
- In particular, $e^{t}=\cosh (t)+\sinh (t)$.

As recalled above, any function is the sum of its even and odd part.
Comparing with Euler's formula, we find $\cosh (i t)=\cos (t)$ and $\sinh (i t)=i \sin (t)$. This indicates that cosh and sinh are related to cos and sin, as their name suggests (see below for the "hyperbolic" part).

- $\frac{\mathrm{d}}{\mathrm{d} t} \cosh (t)=\sinh (t)$ and $\frac{\mathrm{d}}{\mathrm{d} t} \sinh (t)=\cosh (t)$.
- $\quad \cosh (t)$ and $\sinh (t)$ both satisfy the DE $y^{\prime \prime}=y$.

We can write the general solution as $C_{1} e^{t}+C_{2} e^{-t}$ or, if useful, as $C_{1} \cosh (t)+C_{2} \sinh (t)$.

- $\cosh (t)^{2}-\sinh (t)^{2}=1$

Verify this by substituting $\cosh (t)=\frac{1}{2}\left(e^{t}+e^{-t}\right)$ and $\sinh (t)=\frac{1}{2}\left(e^{t}-e^{-t}\right)$.
Note that the equation $x^{2}-y^{2}=1$ describes a hyperbola (just like $x^{2}+y^{2}=1$ describes a circle).
The above equation is saying that $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}\cosh (t) \\ \sinh (t)\end{array}\right]$ is a parametrization of the hyperbola.
Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).
Comment. Hyperbolic geometry plays an important role, for instance, in special relativity: https://en.wikipedia.org/wiki/Hyperbolic_geometry
Homework. Write down the parallel properties of cosine and sine.


