Handling discontinuities with the Laplace transform

Let $u_{a}(t)=\left\{\begin{array}{l}1, \\ 0, \\ 0, \\ \text { if } t<a,\end{array}\right.$ be the unit step function. Throughout, we assume that $a \geqslant 0$.
Comment. The special case $u_{0}(t)$ is also known as the Heaviside function, after Oliver Heaviside who, among many other things, coined terms like conductance and impedance. Note that $u_{a}(t)=u_{0}(t-a)$.

Example 144. If $a<b$, then $u_{a}(t)-u_{b}(t)= \begin{cases}1, & \text { if } a \leqslant t<b, \\ 0, & \text { otherwise. }\end{cases}$
Comment. See Example 147 for how to write piecewise-defined functions as combinations of unit step functions.
The following is a useful addition to our table of Laplace transforms:
Example 145. (new entry) We add the following to our table of Laplace transforms:

$$
\begin{aligned}
\mathcal{L}\left(u_{a}(t) f(t-a)\right) & =\int_{a}^{\infty} e^{-s t} f(t-a) \mathrm{d} t=\int_{0}^{\infty} e^{-s(\tilde{t}+a)} f(\tilde{t}) \mathrm{d} \tilde{t} \\
& =e^{-a s} \int_{0}^{\infty} e^{-s \tilde{t}} f(\tilde{t}) \mathrm{d} \tilde{t}=e^{-a s} F(s)
\end{aligned}
$$

Comment. Note that the graph of $u_{a}(t) f(t-a)$ is the same as $f(t)$ but delayed by a (make a sketch!).
In particular. $\mathcal{L}\left(u_{a}(t)\right)=\frac{e^{-s a}}{s}$
Thus equipped, we can solve differential equations featuring certain kinds of discontinuities.
Note that the DE in our next example describes the motion of a mass on a spring with damping, where the external force is zero except for the time interval $[2,3)$ when we suddenly have a force equal to 5 .

Example 146. Determine the Laplace transform of the unique solution to the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6 y=\left\{\begin{array}{l}
5, \\
\text { if } 2 \leqslant t<3, \\
0,
\end{array} \quad y(0)=-4, \quad y^{\prime}(0)=8 .\right.
$$

Solution. First, we observe that the right-hand side of the differential equation can be written as $5\left(u_{2}(t)-u_{3}(t)\right)$. It follows from the Laplace transform table that $\mathcal{L}\left(u_{a}(t)\right)=e^{-a s} \frac{1}{s}$ (using the entry for $u_{a}(t) f(t-a)$ with $f(t)=1)$. Consequently, $\mathcal{L}\left(5\left(u_{2}(t)-u_{3}(t)\right)\right)=5 e^{-2 s} \frac{1}{s}-5 e^{-3 s} \frac{1}{s}=\frac{5}{s}\left(e^{-2 s}-e^{-3 s}\right)$.
Taking the Laplace transform of both sides of the DE, we therefore get

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+5(s Y(s)-y(0))+6 Y(s)=\frac{5}{s}\left(e^{-2 s}-e^{-3 s}\right),
$$

which using the initial values simplifies to

$$
\left(s^{2}+5 s+6\right) Y(s)+4 s-8+5 \cdot 4=\frac{5}{s}\left(e^{-2 s}-e^{-3 s}\right) .
$$

We conclude that the Laplace transform of the unique solution is

$$
Y(s)=\frac{1}{s^{2}+5 s+6}\left[\frac{5}{s}\left(e^{-2 s}-e^{-3 s}\right)-4 s-12\right] .
$$

First challenge. Take the inverse Laplace transform to find $y(t)$! (See Examples 148 and 149.)
Second challenge. Solve the DE without using Laplace transforms! (First, solve the IVP for $t<2$ in which case we have no external force. That tells us what $y(2)$ and $y^{\prime}(2)$ should be. Using these as the new initial conditions, solve the IVP for $t \in[2,3)$. Then, using $y(3)$ and $y^{\prime}(3)$, solve the IVP for $t \geqslant 3$. In the end, you will have found the solution $y(t)$ in three pieces. On the other hand, the Laplace transform allows us to avoid working piece-by-piece.)

The next example illustrates that any piecewise defined function can be written using a single formula involving step functions. This is based on the simple observation from Example 144 that $u_{a}(t)-u_{b}(t)$ is a function which is 1 on the interval $[a, b)$ but zero everywhere else.
Comment. For our present purposes, we don't really care about the precise value of a function at a single point. Specifically, it doesn't really matter which value the function $u_{a}(t)-u_{b}(t)$ takes at $t=b$ (technically, the value is 0 but it may as well be 1 since there is a discontinuity at $t=b$).

Example 147. Write $f(t)=\left\{\begin{array}{ll}0, & \text { if } t<0, \\ t^{2}, & \text { if } 0 \leqslant t<1, \\ 3, & \text { if } 1 \leqslant t<2, \\ \cos (t-2), & \text { if } t \geqslant 2,\end{array}\right.$ as a combination of unit step functions.
Solution. $f(t)=t^{2}\left(u_{0}(t)-u_{1}(t)\right)+3\left(u_{1}(t)-u_{2}(t)\right)+\cos (t-2) u_{2}(t)$
Homework. Compute the Laplace transform of $f(t)$ from here. Note that, for instance, to find $\mathcal{L}\left(t^{2} u_{1}(t)\right)$, we want to use $\mathcal{L}\left(u_{a}(t) f(t-a)\right)=e^{-s a} F(s)$ with $a=1$ and $f(t-1)=t^{2}$. Then, $f(t)=(t+1)^{2}=t^{2}+2 t+1$ has Laplace transform $F(s)=\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}$. Combined, we get $\mathcal{L}\left(t^{2} u_{1}(t)\right)=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right)$.

Example 148. Determine the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{s+3}\right)$.
Solution. $\frac{1}{s+3}$ is the Laplace transform of $e^{-3 t}$. Hence, $\frac{e^{-2 s}}{s+3}$ is the Laplace transform of $e^{-3 t}$ delayed by 2 . In other words, $\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{s+3}\right)=u_{2}(t) e^{-3(t-2)}$.
Comment. Note that this is one of the terms in our solution $Y(s)$ in Example 146 (because $s^{2}+5 s+6=$ $(s+2)(s+3)$). Can you determine the full inverse Laplace transform of $Y(s)$?

Example 149. Solve the IVP $y^{\prime \prime}+3 y^{\prime}+2 y=f(t), y(0)=y^{\prime}(0)=0$ with $f(t)= \begin{cases}1, & 3 \leqslant t<4, \\ 0, & \text { otherwise } .\end{cases}$
Solution. First, we write $f(t)=u_{3}(t)-u_{4}(t)$. We can now take the Laplace transform of the DE to get

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+3(s Y(s)-y(0))+2 Y(s)=\frac{e^{-3 s}}{s}-\frac{e^{-4 s}}{s}=\left(e^{-3 s}-e^{-4 s}\right) \frac{1}{s}
$$

Using that $s^{2}+3 s+2=(s+1)(s+2)$, we find

$$
Y(s)=\left(e^{-3 s}-e^{-4 s}\right) \frac{1}{s(s+1)(s+2)}=\left(e^{-3 s}-e^{-4 s}\right)\left[\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}\right]
$$

where A, B, C are determined by partial fractions (we compute the values below). Taking the inverse Laplace transform of each of the six terms in this product, as in Example 148, we find

$$
y(t)=A\left(u_{3}(t)-u_{4}(t)\right)+B\left(u_{3}(t) e^{-(t-3)}-u_{4}(t) e^{-(t-4)}\right)+C\left(u_{3}(t) e^{-2(t-3)}-u_{4}(t) e^{-2(t-4)}\right)
$$

If preferred, we can express this as $y(t)= \begin{cases}0, & \text { if } t<3, \\ A+B e^{-(t-3)}+C e^{-2(t-3)}, & \text { if } 3 \leqslant t<4, \\ B\left(e^{-(t-3)}-e^{-(t-4)}\right)+C\left(e^{-2(t-3)}-e^{-2(t-4)}\right) & \text { if } t \geqslant 4 .\end{cases}$
Finally, $A=\left.\frac{1}{(s+1)(s+2)}\right|_{s=0}=\frac{1}{2}, B=\left.\frac{1}{s(s+2)}\right|_{s=-1}=-1, C=\left.\frac{1}{s(s+1)}\right|_{s=-2}=\frac{1}{2}$.
Comment. Check that these values make $y(t)$ a continuous function (as it should be for physical reasons).
Example 150. Determine the Laplace transform $\mathcal{L}\left(e^{r t} u_{a}(t)\right)$.
Solution. Write $e^{r t} u_{a}(t)=f(t-a) u_{a}(t)$ with $f(t)=e^{r(t+a)}=e^{r a} e^{r t}$. Since $F(s)=\mathcal{L}(f(t))=\frac{e^{r a}}{s-r}$, we have

$$
\mathcal{L}\left(e^{r t} u_{a}(t)\right)=e^{-s a} F(s)=\frac{e^{-(s-r) a}}{s-r}
$$

Example 151. (extra practice) Determine the Laplace transform of the unique solution to the initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+5 y=\left\{\begin{array}{ll}
3 e^{-2 t}, & \text { if } 1 \leqslant t<4, \\
0, & \text { otherwise },
\end{array} \quad y(0)=2, \quad y^{\prime}(0)=-1\right.
$$

Solution. First, we write the right-hand side of the differential equation as $f(t):=3 e^{-2 t}\left(u_{1}(t)-u_{4}(t)\right)$. By Example 150, the Laplace transform of $f(t)$ is $\mathcal{L}(f(t))=3 \frac{e^{-(s+2)}}{s+2}-3 \frac{e^{-4(s+2)}}{s+2}=\frac{3}{s+2}\left(e^{-(s+2)}-e^{-4(s+2)}\right)$.
Taking the Laplace transform of both sides of the DE, we therefore get

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)-6(s Y(s)-y(0))+5 Y(s)=\frac{3}{s+2}\left(e^{-(s+2)}-e^{-4(s+2)}\right)
$$

which using the initial values simplifies to

$$
\left(s^{2}-6 s+5\right) Y(s)-2 s+13=\frac{3}{s+2}\left(e^{-(s+2)}-e^{-4(s+2)}\right)
$$

We conclude that the Laplace transform of the unique solution is

$$
Y(s)=\frac{1}{s^{2}-6 s+5}\left[\frac{3}{s+2}\left(e^{-(s+2)}-e^{-4(s+2)}\right)+2 s-13\right] .
$$

