The inverse Laplace transform

Theorem 134. (uniqueness of Laplace transforms) If $\mathcal{L}\left(f_{1}(t)\right)=\mathcal{L}\left(f_{2}(t)\right)$, then $f_{1}(t)=f_{2}(t)$.
Hence, we can recover $f(t)$ from $F(s)$. We write $\mathcal{L}^{-1}(F(s))=f(t)$.
We say that $f(t)$ is the inverse Laplace transform of $F(s)$.
Advanced comment. This uniqueness is true for continuous functions f_{1}, f_{2}. It is also true for piecewise continuous functions except at those values of t for which there is a discontinuity. (Note that redefining $f(t)$ at a single point, will not change its Laplace transform.)

Example 135. Determine the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{5}{s+3}\right)$.
Solution. In other words, if $F(s)=\frac{5}{s+3}$, what is $f(t)$?
$\mathcal{L}^{-1}\left(\frac{5}{s+3}\right)=5 \mathcal{L}^{-1}\left(\frac{1}{s+3}\right)=5 e^{-3 t}$
Example 136. (extra) Determine the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{3 s-7}{s^{2}+4}\right)$.
Solution. In other words, if $F(s)=\frac{3 s-7}{s^{2}+4}$, what is $f(t)$?
$F(s)=3 \frac{s}{s^{2}+2^{2}}-\frac{7}{2} \frac{2}{s^{2}+2^{2}}$. Hence, $f(t)=3 \cos (2 t)-\frac{7}{2} \sin (2 t)$.

Example 137. Determine the inverse Laplace transform $\mathcal{L}^{-1}\left(-\frac{6 s-23}{s^{2}-s-6}\right)$.
Solution. Note that $s^{2}-s-6=(s-3)(s+2)$. We use partial fractions to write $-\frac{6 s-23}{(s-3)(s+2)}=\frac{A}{s-3}+\frac{B}{s+2}$. We find the coefficients (see brief review below) as

$$
A=-\left.\frac{6 s-23}{s+2}\right|_{s=3}=1, \quad B=-\left.\frac{6 s-23}{s-3}\right|_{s=-2}=-7
$$

Hence $\mathcal{L}^{-1}\left(-\frac{6 s-23}{s^{2}-s-6}\right)=\mathcal{L}^{-1}\left(\frac{1}{s-3}-\frac{7}{s+2}\right)=\mathcal{L}^{-1}\left(\frac{1}{s-3}\right)-7 \mathcal{L}^{-1}\left(\frac{7}{s+2}\right)=e^{3 t}-7 e^{-2 t}$.
Review. In order to find A, we multiply $-\frac{6 s-23}{(s-3)(s+2)}=\frac{A}{s-3}+\frac{B}{s+2}$ by $s-3$ to get $-\frac{6 s-23}{s+2}=A+\frac{B(s-3)}{s+2}$. We then set $s=3$ to find A as above.
Comment. Compare with Example 131 where we considered the same functions.
Example 138. Determine the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{s+13}{s^{2}-s-2}\right)$.
Solution. Note that $s^{2}-s-2=(s-2)(s+1)$. We use partial fractions to write $\frac{s+13}{(s-2)(s+1)}=\frac{A}{s-2}+\frac{B}{s+1}$. We find the coefficients as

$$
A=\left.\frac{s+13}{s+1}\right|_{s=2}=5, \quad B=\left.\frac{s+13}{s-2}\right|_{s=-1}=-4
$$

Hence $\mathcal{L}^{-1}\left(\frac{s+13}{s^{2}-s-2}\right)=\mathcal{L}^{-1}\left(\frac{5}{s+1}-\frac{4}{s-2}\right)=5 e^{t}-4 e^{2 t}$.

Solving simple DEs using the Laplace transform

In the following examples, we write $Y(s)$ for the Laplace transform of $y(t)$.
Recall from our Laplace transform table that this implies that the Laplace transform of $y^{\prime}(t)$ is $s Y(s)-y(0)$.
Example 139. Solve the (very simple) IVP $y^{\prime}(t)-2 y(t)=0, y(0)=7$.
At this point, you might be able to "see" right away that the unique solution is $y(t)=7 e^{2 t}$.
Solution. (old style) The characteristic root is 2 , so that the general solution is $y(t)=C e^{2 t}$. Using the initial condition, we find that $C=7$, so that $y(t)=7 e^{2 t}$.

Solution. (Laplace style) $y^{\prime}-2 y=0$ transforms into

$$
\mathcal{L}\left(y^{\prime}(t)-2 y(t)\right)=\mathcal{L}\left(y^{\prime}(t)\right)-2 \mathcal{L}(y(t))=s Y(s)-y(0)-2 Y(s)=(s-2) Y(s)-7=0 .
$$

This is an algebraic equation for $Y(s)$. It follows that $Y(s)=\frac{7}{s-2}$. By inverting the Laplace transform, we conclude that $y(t)=7 e^{2 t}$.

