Excursion: Euler's identity

Let's revisit Euler's identity from Theorem 79.
Theorem 125. (Euler's identity) $e^{i x}=\cos (x)+i \sin (x)$
Proof. Observe that both sides are the (unique) solution to the IVP $y^{\prime}=i y, y(0)=1$.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.]
On lots of T-shirts. In particular, with $x=\pi$, we get $e^{\pi i}=-1$ or $e^{i \pi}+1=0$ (which connects the five fundamental constants).

Example 126. Where do trig identities like $\sin (2 x)=2 \cos (x) \sin (x)$ or $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$ (and infinitely many others!) come from?
Short answer: they all come from the simple exponential law $e^{x+y}=e^{x} e^{y}$.
Let us illustrate this in the simple case $\left(e^{x}\right)^{2}=e^{2 x}$. Observe that

$$
\begin{aligned}
e^{2 i x} & =\cos (2 x)+i \sin (2 x) \\
e^{i x} e^{i x} & =[\cos (x)+i \sin (x)]^{2}=\cos ^{2}(x)-\sin ^{2}(x)+2 i \cos (x) \sin (x)
\end{aligned}
$$

Comparing imaginary parts (the "stuff with an i "), we conclude that $\sin (2 x)=2 \cos (x) \sin (x)$.
Likewise, comparing real parts, we read off $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$.

$$
\text { (Use } \cos ^{2}(x)+\sin ^{2}(x)=1 \text { to derive } \sin ^{2}(x)=\frac{1-\cos (2 x)}{2} \text { from the last equation.) }
$$

Challenge. Can you find a triple-angle trig identity for $\cos (3 x)$ and $\sin (3 x)$ using $\left(e^{x}\right)^{3}=e^{3 x}$?
Or, use $e^{i(x+y)}=e^{i x} e^{i y}$ to derive $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ and $\sin (x+y)=\ldots$

Realize that the complex number $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ corresponds to the point $(\cos (\theta), \sin (\theta))$. These are precisely the points on the unit circle!

Recall that a point (x, y) can be represented using polar coordinates (r, θ), where r is the distance to the origin and θ is the angle with the x-axis.
Then, $x=r \cos \theta$ and $y=r \sin \theta$.
Every complex number z can be written in polar form as $z=r e^{i \theta}$, with $r=|z|$.
Why? By comparing with the usual polar coordinates ($x=r \cos \theta$ and $y=r \sin \theta$), we can write

$$
z=x+i y=r \cos \theta+i r \sin \theta=r e^{i \theta} .
$$

In the final step, we used Euler's identity.

