Review. Modeling two connected fluid tanks

Higher-order linear DEs as first-order systems

Example 120. Write the (second-order) differential equation $y^{\prime \prime}=2 y^{\prime}+5 y$ as a system of (firstorder) differential equations.
Solution. Write $y_{1}=y$ and $y_{2}=y^{\prime}$. Then $y^{\prime \prime}=2 y^{\prime}+5 y$ becomes $y_{2}^{\prime}=2 y_{2}+5 y_{1}$.
Therefore, $y^{\prime \prime}=2 y^{\prime}+5 y$ translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=5 y_{1}+2 y_{2}\end{array}\right.$. In matrix form, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 5 & 2\end{array}\right] \boldsymbol{y}$.

Comment. This illustrates why we might care about systems of DEs, even if we work with only one function.
Example 121. Write the (third-order) differential equation $y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+4 y$ as a system of (first-order) differential equations.
Solution. Write $y_{1}=y, y_{2}=y^{\prime}$ and $y_{3}=y^{\prime \prime}$.
Then, $y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+4 y$ translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=y_{3} \\ y_{3}^{\prime}=4 y_{1}-2 y_{2}+3 y_{3}\end{array}\right.$. $\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$. In matrix form, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -2 & 3\end{array}\right] \boldsymbol{y}$.

Example 122. Consider the following system of (second-order) initial value problems:

$$
\begin{aligned}
& y_{1}^{\prime \prime}=2 y_{1}^{\prime}-3 y_{2}^{\prime}+7 y_{2} \\
& y_{2}^{\prime \prime}=4 y_{1}^{\prime}+y_{2}^{\prime}-5 y_{1}
\end{aligned} \quad y_{1}(0)=2, y_{1}^{\prime}(0)=3, y_{2}(0)=-1, y_{2}^{\prime}(0)=1
$$

Write it as a first-order initial value problem in the form $\boldsymbol{y}^{\prime}=M \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{y}_{0}$.
Solution. Introduce $y_{3}=y_{1}^{\prime}$ and $y_{4}=y_{2}^{\prime}$. Then, the given system translates into

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 7 & 2 & -3 \\
-5 & 0 & 4 & 1
\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1
\end{array}\right]
$$

