Review. Modeling two connected fluid tanks

Higher-order linear DEs as first-order systems

Example 120. Write the (second-order) differential equation y'' = 2y' + 5y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$ and $y_2 = y'$. Then y'' = 2y' + 5y becomes $y'_2 = 2y_2 + 5y_1$. Therefore, y'' = 2y' + 5y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = 5y_1 + 2y_2 \end{cases}$ In matrix form, this is $\boldsymbol{y}' = \begin{bmatrix} 0 & 1 \\ 5 & 2 \end{bmatrix} \boldsymbol{y}$.

Comment. This illustrates why we might care about systems of DEs, even if we work with only one function.

Example 121. Write the (third-order) differential equation y''' = 3y'' - 2y' + 4y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$, $y_2 = y'$ and $y_3 = y''$.

Then, y''' = 3y'' - 2y' + 4y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_3 \\ y'_3 = 4y_1 - 2y_2 + 3y_3 \end{cases}$. In matrix form, this is $\mathbf{y}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -2 & 3 \end{bmatrix} \mathbf{y}$.

Example 122. Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1''=2y_1'-3y_2'+7y_2\\ y_2''=4y_1'+y_2'-5y_1 \end{array} \hspace{0.5cm} y_1(0)=2, \hspace{0.5cm} y_1'(0)=3, \hspace{0.5cm} y_2(0)=-1, \hspace{0.5cm} y_2'(0)=1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Solution. Introduce $y_3 = y'_1$ and $y_4 = y'_2$. Then, the given system translates into

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}, \quad \boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \end{bmatrix}.$$