Systems of differential equations

Modeling two connected fluid tanks

Example 117. Consider two brine tanks. Tank T_{1} contains 24 gal water containing 3lb salt, and tank T_{2} contains 9gal pure water.

- T_{1} is being filled with $54 \mathrm{gal} / \mathrm{min}$ water containing $0.5 \mathrm{lb} /$ gal salt.
- $72 \mathrm{gal} / \mathrm{min}$ well-mixed solution flows out of T_{1} into T_{2}.
- $18 \mathrm{gal} / \mathrm{min}$ well-mixed solution flows out of T_{2} into T_{1}.
- Finally, $54 \mathrm{gal} / \mathrm{min}$ well-mixed solution is leaving T_{2}.

How much salt is in the tanks after t minutes?

Solution. Note that the amount of water in each tank is constant because the flows balance each other.
Let $y_{i}(t)$ denote the amount of salt (in Ib) in tank T_{i} after time t (in $\mathbf{~ m i n}$). In the time interval $[t, t+\Delta t]$:
$\Delta y_{1} \approx 54 \cdot \frac{1}{2} \cdot \Delta t-72 \cdot \frac{y_{1}}{24} \cdot \Delta t+18 \cdot \frac{y_{2}}{9} \cdot \Delta t$, so $y_{1}^{\prime}=27-3 y_{1}+2 y_{2}$. Also, $y_{1}(0)=3$.
$\Delta y_{2} \approx 72 \cdot \frac{y_{1}}{24} \cdot \Delta t-72 \cdot \frac{y_{2}}{9} \cdot \Delta t$, so $y_{2}^{\prime}=3 y_{1}-8 y_{2}$. Also, $y_{2}(0)=0$.
One strategy to solve this system is to first combine the two DEs to get a single equation for y_{1}.

- From the first DE, we get $y_{2}=\frac{1}{2} y_{1}^{\prime}+\frac{3}{2} y_{1}-\frac{27}{2}$.
- Using this in the second DE, we obtain $\left(\frac{1}{2} y_{1}^{\prime}+\frac{3}{2} y_{1}-\frac{27}{2}\right)^{\prime}=3 y_{1}-8\left(\frac{1}{2} y_{1}^{\prime}+\frac{3}{2} y_{1}-\frac{27}{2}\right)$.

Simplified, this is $y_{1}^{\prime \prime}+11 y_{1}^{\prime}+18 y_{1}=216$.

- We already have the initial condition $y_{1}(0)=3$. We get a second one by combining $y_{2}=\frac{1}{2} y_{1}^{\prime}+\frac{3}{2} y_{1}-\frac{27}{2}$ with $y_{2}(0)=0$ to get $0=y_{2}(0)=\frac{1}{2} y_{1}^{\prime}(0)+\frac{3}{2} y_{1}(0)-\frac{27}{2}=\frac{1}{2} y_{1}^{\prime}(0)-9$, which simplifies to $y_{1}^{\prime}(0)=18^{2}$.
- The IVP $y_{1}^{\prime \prime}+11 y_{1}^{\prime}+18 y_{1}=216$ with initial conditions $y_{1}(0)=3$ and $y_{1}^{\prime}(0)=18$ is one that we can solve!
- The general solution of the corresponding homogeneous equation is $y_{h}=C_{1} e^{-2 t}+C_{2} e^{-9 t}$.
- The simplest particular solution is of the form $y_{p}=C$. Plugging into the DE , we find $y_{p}=\frac{216}{18}=12$.
- Hence, the general solution to the (inhomogeneous) DE is $y(x)=12+C_{1} e^{-2 t}+C_{2} e^{-9 t}$. We then use the initial conditions $y(0)=12+C_{1}+C_{2} \stackrel{!}{=} 3, y^{\prime}(0)=-2 C_{1}-9 C_{2} \stackrel{!}{=} 18$ to find that for the unique solution of the IVP $C_{1}=-9, C_{2}=0$.

It has the unique solution $y_{1}(t)=12-9 e^{-2 t}$.

- It follows that $y_{2}=\frac{1}{2} y_{1}^{\prime}+\frac{3}{2} y_{1}-\frac{27}{2}=\frac{9}{2}-\frac{9}{2} e^{-2 t}$.

Note. We could have found a particular solution with less calculations by observing (looking at "old" and "new" roots) that there must be a solution of the form $\boldsymbol{y}_{p}(t)=\boldsymbol{a}$. We can then find \boldsymbol{a} by plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a constant concentration of $0.5 \mathrm{lb} / \mathrm{gal}$ of salt, we find $\boldsymbol{y}_{p}(t)=\left[\begin{array}{c}12 \\ 4.5\end{array}\right]$.

Example 118. Write the system of equations

$$
\begin{array}{ll}
y_{1}^{\prime}=-3 y_{1}+2 y_{2}+27 & y_{1}(0)=3 \\
y_{2}^{\prime}=3 y_{1}-8 y_{2} & y_{2}(0)=0
\end{array}
$$

from the previous problem in matrix-vector notation.
Solution. If we write $\boldsymbol{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, then the system becomes

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{cc}
-3 & 2 \\
3 & -8
\end{array}\right] \boldsymbol{y}+\left[\begin{array}{c}
27 \\
0
\end{array}\right], \quad \boldsymbol{y}(0)=\left[\begin{array}{l}
3 \\
0
\end{array}\right] .
$$

Advanced comment. Here, we only use the matrix-vector notation as a device for writing the system of equations in a more compact form. However, it turns out that the matrix-vector notation makes certain techniques more transparent (just like writing a system of equations in the form $A \boldsymbol{x}=\boldsymbol{b}$ suggests introducing the matrix inverse to simply write $\boldsymbol{x}=A^{-1} \boldsymbol{b}$). For instance, the unique solution to a homogeneous linear system $\boldsymbol{y}^{\prime}=M \boldsymbol{y}$ (where M is a matrix with constant entries) with initial condition $\boldsymbol{y}(0)=\boldsymbol{c}$ can be expressed as $\boldsymbol{y}(x)=e^{M x} \boldsymbol{c}$, just as in the case of a single linear DE. Here, $e^{M x}$ is the matrix exponential. This will be one of the topics discussed in both Differential Equations II and Linear Algebra II.

Example 119. (extra) Three brine tanks T_{1}, T_{2}, T_{3}.
T_{1} contains 20 gal water with 10 lb salt, $T_{2} 40 \mathrm{gal}$ pure water, $T_{3} 50 \mathrm{gal}$ water with 30 lb salt.
T_{1} is filled with $10 \mathrm{gal} / \mathrm{min}$ water with $2 \mathrm{lb} / \mathrm{gal}$ salt. $10 \mathrm{gal} / \mathrm{min}$ well-mixed solution flows out of T_{1} into T_{2}. Also, $10 \mathrm{gal} / \mathrm{min}$ well-mixed solution flows out of T_{2} into T_{3}. Finally, $10 \mathrm{gal} / \mathrm{min}$ wellmixed solution is leaving T_{3}. How much salt is in the tanks after t minutes?
Solution. Let $y_{i}(t)$ denote the amount of salt (in Ib) in tank T_{i} after time t (in min).
In the time interval $[t, t+\Delta t]$:
$\Delta y_{1} \approx 10 \cdot 2 \cdot \Delta t-10 \frac{y_{1}}{20} \cdot \Delta t$, so $y_{1}^{\prime}=20-\frac{1}{2} y_{1}$. Also, $y_{1}(0)=10$.
$\Delta y_{2} \approx 10 \cdot \frac{y_{1}}{20} \cdot \Delta t-10 \frac{y_{2}}{40} \cdot \Delta t$, so $y_{2}^{\prime}=\frac{1}{2} y_{1}-\frac{1}{4} y_{2}$. Also, $y_{2}(0)=0$.
$\Delta y_{3} \approx 10 \cdot \frac{y_{2}}{40} \cdot \Delta t-10 \frac{y_{3}}{50} \cdot \Delta t$, so $y_{3}^{\prime}=\frac{1}{4} y_{2}-\frac{1}{5} y_{3}$. Also, $y_{3}(0)=30$.
Using matrix notation and writing $\boldsymbol{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}-1 / 2 & 0 & 0 \\ 1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 4 & -1 / 5\end{array}\right] \boldsymbol{y}+\left[\begin{array}{c}20 \\ 0 \\ 0\end{array}\right], \boldsymbol{y}(0)=\left[\begin{array}{l}10 \\ 0 \\ 30\end{array}\right]$.
We can actually solve this IVP!
[Do it! Start by finding y_{1} from the first DE, then move on to $y_{2} \ldots$]
Here, we content ourselves with finding a particular solution (and ignoring the initial conditions). The method of undetermined coefficients tells us that there is a solution of the form $\boldsymbol{y}_{p}(t)=\boldsymbol{a}$. Of course, we can find \boldsymbol{a} by plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a concentration of $2 \mathrm{lb} / \mathrm{gal}$ of salt, we find $\boldsymbol{y}_{p}=(40,80,100)$ without calculation.

