
Notes for Lecture 27 Wed, 11/1/2023

External forces plus damping

In the presence of both damping and a periodic external force, the motion y(t) = ytr+ ysp of a
mass on a spring splits into transient motion ytr (with ytr(t)!0 as t!1) and steady periodic
oscillations ysp. The following example spells this out.

Comment. Note that ysp will correspond to the simplest particular solution, while ytr corresponds to the solution
of the corresponding homogeneous system (where we have no external force).

Example 113. A forced mechanical oscillator is described by 2y 00+2y 0+ y=10sin(t). As t!1,
what are the period and the amplitude of the resulting steady periodic oscillations?

Solution. The �old� roots are 1
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i. Accordingly, the system without external force is

underdamped (because of the �i/2 the solutions will involve oscillations).
The �new� roots are �i so that there must be a particular solution yp=A cos(t)+B sin(t) with coefficients A;
B that we need to determine by plugging into the DE. This results in A=¡4 and B=¡2 (do it!).

Hence, the general solution is y(t)=¡4cos(t)¡ 2sin(t)
ysp
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The period of ysp=¡4cos(t)¡ 2sin(t) is 2� and the amplitude is (¡4)2+(¡2)2
q

= 20
p

.

Comment. Using the polar coordinates (¡4;¡2)= 20
p

(cos�; sin�) where �= tan¡1(1/2)+�� 3.605, we
can alternatively express the steady periodic oscillations as ysp=¡4cos(t)¡ 2sin(t)= 20

p
(cos(t¡�)).

Example 114. A forced mechanical oscillator is described by y 00+ 5y 0+ 6y = 2 cos(3t). What
are the (circular) frequency and the amplitude of the resulting steady periodic oscillations?

Solution. The �old� roots are¡2;¡3. Accordingly, the systemwithout external force is overdamped (the solutions
will not involve oscillations).
The �new� roots are �3i so that there must be a particular solution yp=A cos(3t)+B sin(3t) with coefficients
A;B that we need to determine by plugging into the DE. To do so, we compute yp

0 =¡3A sin(3t)+3B cos(3t)
as well as yp

00=¡9A cos(3t)¡ 9B sin(3t).

yp
00+5yp

0 +6yp = (¡9A cos(3t)¡ 9B sin(3t))+ 5(¡3A sin(3t)+ 3B cos(3t))+ 6(A cos(3t)+B sin(3t))
= (¡9A+ 15B+6A)cos(3t)+ (¡9B ¡ 15A+6B)sin(3t)

=
!
2 cos(3t)

This results in the two equations ¡ 3A+ 15B =2 and ¡3B ¡ 15A=0, which we solve to find A=¡ 1

39
and

B=
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39 .

The general solution is y(t)=¡ 1

39
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sin(3t)
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The frequency of ysp=¡ 1
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Example 115. Find the steady periodic solution to y 00 + 2y 0 + 5y = cos(�t). What is the
amplitude of the steady periodic oscillations? For which � is the amplitude maximal?

Solution. The �old� roots are ¡1� 2i.
[Not really needed, because positive damping prevents duplication; can you see it?]

Hence, ysp=A cos(�t) +B sin(�t) and to find A;B we need to plug
into the DE.

Doing so, we find A= 5¡�2

(5¡�2)2+4�2
, B=

2�

(5¡�2)2+4�2
.

Thus, the amplitude of ysp is r(�)= A2+B2
p

=
1

(5¡�2)2+4�2
p .

The function r(�) is sketched to the right. It has a maximum at � =
3

p
at which the amplitude is unusually large (well, here it is not very

pronounced). We say that practical resonance occurs for �= 3
p

.

[For comparison, without damping, (pure) resonance occurs for �= 5
p

.]
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Example 116. (homework) A car is going at constant speed v on a washboard road surface
(�bumpy road�) with height profile y(s) = a cos

�
2�s

L

�
. Assume that the car oscillates vertically

as if on a spring (no dashpot). Describe the resulting oscillations.

Solution. With x as in the sketch, the spring is stretched by x ¡ y. Hence, by
Hooke's and Newton's laws, its motion is described by mx00=¡k(x¡ y).

At constant speed, s= vt and we obtain the DE mx00+ kx= ky= ka cos
�
2�vt

L

�
,

which is inhomogeneous linear with constant coefficients. Let's solve it.

�Old� roots: �i k

m

q
=�i!0. !0= k

m

q
is the natural frequency.

�New� roots: i 2�v
L

=�i!. != 2�v

L
is the external frequency.

Case 1: !=/ !0. Then a particular solution is xp = b1 cos(!t) + b2 sin(!t) =
A cos(!t¡ �) for unique values of b1; b2 (which we do not compute here).
The general solution is of the form x=xp+C1 cos(!0t)+C2 sin(!0t).

Case 2: !=!0. Then a particular solution is xp= t[b1 cos(!t)+ b2 sin(!t)]=
At cos(!t¡�) for unique values of b1; b2 (which we do not compute). Note
that the amplitude in xp increases without bound; the same is true for the gen-
eral solution x=xp+C1 cos(!0t)+C2 sin(!0t). This phenomenon is called
resonance; it occurs if an external frequency matches a natural frequency.

x

y

The first �car� is assumed
to be in equilibrium.
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(A Halloween scare!) � is the perimeter of a circle enclosed in a
square with edge length 1. The perimeter of the square is 4, which
approximates �. To get a better approximation, we �fold� the vertices
of the square towards the circle (and get the blue polygon). This
construction can be repeated for even better approximations and, in
the limit, our shape will converge to the true circle. At each step, the
perimeter is 4, so we conclude that �=4, contrary to popular belief.

Can you pin-point the fallacy in this argument?
(We are not doing something completely silly! For instance, the areas of our approximations do converge to �/4,
the area of the circle.)

The �solution� is below.. .

(�=4, �solution�)
We are constructing curves cn with the property that cn! c where c is the circle. This convergence can be
understood, for instance, in the same sense kcn ¡ ck ! 0 with the norm measuring the maximum distance
between the two curves.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn! x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very different arc length.
We can dig a little deeper: as we learned in Calculus II, the arc length of a function y= fn(x) for x2 [a; b] isZ

a

b

(dx)2+(dy)2
q

=

Z
a

b

1+ fn
0 (x)2

q
dx:

Observe that this involves fn
0 (x). Try to see why the operator D that sends f to f 0 is not continuous with

respect to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�
1/2

:

In words, two functions f and g can be arbitrarily close, yet have very different derivatives f 0 and g0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to infinite dimensional
spaces (like the space of all differentiable functions). The linear operators (�matrices�) on these spaces frequently
fail to be continuous.
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