The qualitative effects of damping

The motion of a mass on a spring (or the approximate motion of a pendulum), with damping taken into account, can be modeled by the DE

$$
y^{\prime \prime}+d y^{\prime}+c y=0
$$

with $c>0$ and $d \geqslant 0$. The term $d y^{\prime}$ models damping (e.g. friction, air resistance) proportional to the velocity y^{\prime}.
The characteristic equation $r^{2}+d r+c=0$ has roots $\frac{1}{2}\left(-d \pm \sqrt{d^{2}-4 c}\right)$.
The nature of the solutions depends on whether the discriminant $\Delta=d^{2}-4 c$ is positive, negative, or zero.

Undamped. $d=0$. In that case, $\Delta<0$. We get two complex roots $\pm i \omega$ with $\omega=\sqrt{c}$.
Solutions: $A \cos (\omega t)+B \sin (\omega t)=r \cos (\omega t-\alpha)$ where $(A, B)=r(\cos \alpha, \sin \alpha)$
These are oscillations with frequency ω and amplitude r.
Underdamped. $d>0, \Delta<0$. We get two complex roots $-\rho \pm i \omega$ with $-\rho=-d / 2<0$.
Solutions: $e^{-\rho t}[A \cos (\omega t)+B \sin (\omega t)]=e^{-\rho t}[r \cos (\omega t-\alpha)]$
$(\rightarrow 0$ as $t \rightarrow \infty)$
These are oscillations with amplitude going to zero.
Critically damped. $d>0, \Delta=0$. We get one (double) real root $-\rho<0$.
Solutions: $(A+B t) e^{-\rho t}$

$$
(\rightarrow 0 \text { as } t \rightarrow \infty)
$$

There are no oscillations. (Can you see why we cross the t-axis at most once?)
Overdamped. $d>0, \Delta>0$. We get two real roots $-\rho_{1},-\rho_{2}<0$. [negative because $c, d>0$]
Solutions: $A e^{-\rho_{1} t}+B e^{-\rho_{2} t}$
$(\rightarrow 0$ as $t \rightarrow \infty)$
There are no oscillations. (Again, there is at most one crossing of the t-axis.)
Example 107. The motion of a mass on a spring is described by $5 y^{\prime \prime}+d y^{\prime}+2 y=0$ with $d>0$. For which value of d is the motion critically damped? Underdamped? Overdamped?
Solution. The characteristic roots are $\frac{1}{2}\left(-d \pm \sqrt{d^{2}-40}\right)$. The motion is critically damped if $d^{2}-40=0$. Equivalently, the motion is critically damped $d=\sqrt{40}$.
Consequently, the motion is underdamped if $d<\sqrt{40}$ (then we get complex roots and the solutions will involve oscillations), and it is overdamped if $d>\sqrt{40}$ (the roots are real and the solutions will not involve oscillations).

Example 108. The motion of a mass on a spring is described by $m y^{\prime \prime}+3 y^{\prime}+2 y=0$. For which value of m is the motion critically damped? Underdamped? Overdamped?
Solution. The characteristic roots are $\frac{1}{2}(-3 \pm \sqrt{9-8 m})$. The motion is critically damped if $9-8 m=0$. Equivalently, the motion is critically damped $m=\frac{9}{8}$.
Consequently, the motion is underdamped if $m>\frac{9}{8}$ (then we get complex roots and the solutions will involve oscillations), and it is overdamped if $m<\frac{9}{8}$ (the roots are real and the solutions will not involve oscillations).

