Example 90. Consider the DE $y^{\prime \prime}+4 y^{\prime}+4 y=2 e^{3 x}-5 e^{-2 x}$.
(a) What is the simplest form (with undetermined coefficients) of a particular solution?
(b) Determine a particular solution using our results from Examples 88 and 89.
(c) Determine the general solution.

Solution.
(a) The "old" roots are $-2,-2$. The "new" roots are $3,-2$. Hence, there has to be a particular solution of the form $y_{p}=A e^{3 x}+B x^{2} e^{-2 x}$.
To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem into two pieces as illustrated in the next part.
(b) Write the DE as $L y=2 e^{3 x}-5 e^{-2 x}$ where $L=D^{2}+4 D+4$. In Example 88 we found that $y_{1}=\frac{1}{25} e^{3 x}$ satisfies $L y_{1}=e^{3 x}$. Also, in Example 89 we found that $y_{2}=\frac{7}{2} x^{2} e^{-2 x}$ satisfies $L y_{2}=7 e^{-2 x}$.
By linearity, it follows that $L\left(A y_{1}+B y_{2}\right)=A L y_{1}+B L y_{2}=A e^{3 x}+7 B e^{-2 x}$.
To get a particular solution y_{p} of our DE, we need $A=2$ and $7 B=-5$.
Hence, $y_{p}=2 y_{1}-\frac{5}{7} y_{2}=\frac{2}{25} e^{3 x}-\frac{5}{2} x^{2} e^{-2 x}$.
Comment. Of course, if we hadn't previously solved Examples 88 and 89, we could have plugged the result from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the inhomogeneous part ($2 e^{3 x}-5 e^{-2 x}$) up into pieces (here, $e^{3 x}$ and $e^{-2 x}$) can help keep things organized, especially when working by hand.
(c) The general solution is $\frac{2}{25} e^{3 x}-\frac{5}{2} x^{2} e^{-2 x}+\left(C_{1}+C_{2} x\right) e^{2 x}$.

Example 91. Consider the DE $y^{\prime \prime}-2 y^{\prime}+y=5 \sin (3 x)$.
(a) What is the simplest form (with undetermined coefficients) of a particular solution?
(b) Determine a particular solution.
(c) Determine the general solution.

Solution.
(a) Since $D^{2}-2 D+1=(D-1)^{2}$, the "old" roots are 1, 1. The "new" roots are $\pm 3 i$. Hence, there has to be a particular solution of the form $y_{p}=A \cos (3 x)+B \sin (3 x)$.
(b) To find the values of A and B, we plug into the DE.
$y_{p}^{\prime}=-3 A \sin (3 x)+3 B \cos (3 x)$
$y_{p}^{\prime \prime}=-9 A \cos (3 x)-9 B \sin (3 x)$
$y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=(-8 A-6 B) \cos (3 x)+(6 A-8 B) \sin (3 x) \stackrel{!}{=} 5 \sin (3 x)$
Equating the coefficients of $\cos (x), \sin (x)$, we obtain the two equations $-8 A-6 B=0$ and $6 A-8 B=5$. Solving these, we find $A=\frac{3}{10}, B=-\frac{2}{5}$. Accordingly, a particular solution is $y_{p}=\frac{3}{10} \cos (3 x)-\frac{2}{5} \sin (3 x)$.
(c) The general solution is $y(x)=\frac{3}{10} \cos (3 x)-\frac{2}{5} \sin (3 x)+\left(C_{1}+C_{2} x\right) e^{x}$.

Example 92. Consider the DE $y^{\prime \prime}-2 y^{\prime}+y=5 e^{2 x} \sin (3 x)+7 x e^{x}$. What is the simplest form (with undetermined coefficients) of a particular solution?
Solution. Since $D^{2}-2 D+1=(D-1)^{2}$, the "old" roots are 1,1 . The "new" roots are $2 \pm 3 i, 1,1$. Hence, there has to be a particular solution of the form $y_{p}=A e^{2 x} \cos (3 x)+B e^{2 x} \sin (3 x)+C x^{2} e^{x}+D x^{3} e^{x}$.
(We can then plug into the DE to determine the (unique) values of the coefficients A, B, C, D.)

Example 93. (homework) What is the shape of a particular solution of $y^{\prime \prime}+4 y^{\prime}+4 y=x \cos (x)$?
Solution. The "old" roots are $-2,-2$. The "new" roots are $\pm i, \pm i$. Hence, there has to be a particular solution of the form $y_{p}=\left(C_{1}+C_{2} x\right) \cos (x)+\left(C_{3}+C_{4} x\right) \sin (x)$.

Continuing to find a particular solution. To find the value of the C_{j} 's, we plug into the DE.
$y_{p}^{\prime}=\left(C_{2}+C_{3}+C_{4} x\right) \cos (x)+\left(C_{4}-C_{1}-C_{2} x\right) \sin (x)$
$y_{p}^{\prime \prime}=\left(2 C_{4}-C_{1}-C_{2} x\right) \cos (x)+\left(-2 C_{2}-C_{3}-C_{4} x\right) \sin (x)$
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=\left(3 C_{1}+4 C_{2}+4 C_{3}+2 C_{4}+\left(3 C_{2}+4 C_{4}\right) x\right) \cos (x)$

$$
+\left(-4 C_{1}-2 C_{2}+3 C_{3}+4 C_{4}+\left(-4 C_{2}+3 C_{4}\right) x\right) \sin (x) \stackrel{!}{=} x \cos (x)
$$

Equating the coefficients of $\cos (x), x \cos (x), \sin (x), x \sin (x)$, we get the equations $3 C_{1}+4 C_{2}+4 C_{3}+2 C_{4}=0$, $3 C_{2}+4 C_{4}=1,-4 C_{1}-2 C_{2}+3 C_{3}+4 C_{4}=0,-4 C_{2}+3 C_{4}=0$.
Solving (this is tedious!), we find $C_{1}=-\frac{4}{125}, C_{2}=\frac{3}{25}, C_{3}=-\frac{22}{125}, C_{4}=\frac{4}{25}$.
Hence, $y_{p}=\left(-\frac{4}{125}+\frac{3}{25} x\right) \cos (x)+\left(-\frac{22}{125}+\frac{4}{25} x\right) \sin (x)$.

Example 94. (homework) What is the shape of a particular solution of $y^{\prime \prime}+4 y^{\prime}+4 y=$ $4 e^{3 x} \sin (2 x)-x \sin (x)$.
Solution. The "old" roots are $-2,-2$. The "new" roots are $3 \pm 2 i, \pm i, \pm i$.
Hence, there has to be a particular solution of the form
$y_{p}=C_{1} e^{3 x} \cos (2 x)+C_{2} e^{3 x} \sin (2 x)+\left(C_{3}+C_{4} x\right) \cos (x)+\left(C_{5}+C_{6} x\right) \sin (x)$.
Continuing to find a particular solution. To find the values of C_{1}, \ldots, C_{6}, we plug into the DE. But this final step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine obediently calculated: $y_{p}=-\frac{4}{841} e^{3 x}(20 \cos (2 x)-21 \sin (2 x))+\frac{1}{125}((-22+20 x) \cos (x)+(4-15 x) \sin (x))$

A more general method for finding particular solutions: variation of parameters

The method of undetermined coefficients allows us to solve an inhomogeneous linear DE $L y=$ $f(x)$ for certain functions $f(x)$. The next method has no restriction on the functions $f(x)$ we can handle. The price to pay for this is that the method is usually more laborious.

Review. To find the general solution of an inhomogeneous linear DE $L y=f(x)$, we only need to find a single particular solution y_{p}. Then the general solution is $y_{p}+y_{h}$, where y_{h} is the general solution of $L y=0$.

Theorem 95. (variation of parameters) A particular solution to the inhomogeneous secondorder linear DE $L y=y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{0}(x) y=f(x)$ is given by:

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x), \quad u_{1}(x)=-\int \frac{y_{2}(x) f(x)}{W(x)} \mathrm{d} x, \quad u_{2}(x)=\int \frac{y_{1}(x) f(x)}{W(x)} \mathrm{d} x
$$

where y_{1}, y_{2} are independent solutions of $L y=0$ and $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is their Wronskian.

Comment. We obtain the general solution if we consider all possible constants of integration in the formula for y_{p}.

Proof. Let us look for a particular solution of the form $y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$.
This "ansatz" is called variation of constants/parameters. We plug into the DE to determine conditions on u_{1}, u_{2} so that y_{p} is a solution. The DE will give us one condition and (since there are two unknowns), it is reasonable to expect that we can impose a second condition (labelled below as "our wish") to make our life simpler.
We compute $y_{p}^{\prime}=\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{=0 \text { (our wish) }}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}$ and, thus, $y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}$.
["Our wish" was chosen so that $y_{p}^{\prime \prime}$ would only involve first derivatives of u_{1} and u_{2}.]
Therefore, plugging into the DE results in

$$
L y_{p}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+\underbrace{u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P_{1}(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+P_{0}(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)}_{=u_{1} L y_{1}+u_{2} L y_{2}=0} \stackrel{!}{=} f(x)
$$

We conclude that y_{p} solves the DE if the following two conditions (the first is "our wish") are satisfied:

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)
\end{aligned}
$$

These are linear equations in u_{1}^{\prime} and u_{2}^{\prime}. Solving gives $u_{1}^{\prime}=\frac{-y_{2} f(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}$ and $u_{2}^{\prime}=\frac{y_{1} f(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}$, and it only remains to integrate.
Comment. In matrix-vector form, the equations are $\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right]\left[\begin{array}{l}u_{1}^{\prime} \\ u_{2}^{\prime}\end{array}\right]=\left[\begin{array}{c}0 \\ f(x)\end{array}\right]$.
Our solution then follows from multiplying $\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right]^{-1}=\frac{1}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}\left[\begin{array}{cc}y_{2}^{\prime} & -y_{2} \\ -y_{1}^{\prime} & y_{1}\end{array}\right]$ with $\left[\begin{array}{c}0 \\ f(x)\end{array}\right]$.
Advanced comment. $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is called the Wronskian of y_{1} and y_{2}. In general, given a linear homogeneous DE of order n with solutions y_{1}, \ldots, y_{n}, the Wronskian of y_{1}, \ldots, y_{n} is the determinant of the matrix where each column consists of the derivatives of one of the y_{i}. One useful property of the Wronskian is that it is nonzero if and only if the y_{1}, \ldots, y_{n} are linearly independent and therefore generate the general solution.

Example 96. Determine the general solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$.
Solution. This DE is of the form $L y=f(x)$ with $L=D^{2}-2 D+1$ and $f(x)=\frac{e^{x}}{x}$.
Since $L=(D-1)^{2}$, the homogeneous DE has the two solutions $y_{1}=e^{x}, y_{2}=x e^{x}$.
The corresponding Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{x}(1+x) e^{x}-e^{x}\left(x e^{x}\right)=e^{2 x}$.
By variation of parameters (Theorem 95), we find that a particular solution is

$$
y_{p}=-y_{1} \int \frac{y_{2} f}{W} \mathrm{~d} x+y_{2} \int \frac{y_{1} f}{W} \mathrm{~d} x=-e^{x} \int 1 \mathrm{~d} x+x e^{x} \int \frac{1}{x} \mathrm{~d} x=x e^{x}(\ln |x|-1)
$$

The general solution therefore is $x e^{x}(\ln |x|-1)+\left(C_{1}+C_{2} x\right) e^{x}$.
If we prefer, a simplified particular solution is $x e^{x} \ln |x|$ (because we can add any multiple of $x e^{x}$ to y_{p}). Then the general solution takes the simplified form $x e^{x} \ln |x|+\left(C_{1}+C_{2} x\right) e^{x}$.
Comment. Adding constants of integration in the formula for y_{p}, we get $-e^{x}\left(x+D_{1}\right)+x e^{x}\left(\ln |x|+D_{2}\right)$, which is the general solution. Any choice of constants suffices to give us a particular solution.
Important comment. Note that we cannot use the method of undetermined coefficients here because the inhomogeneous term $f(x)=\frac{e^{x}}{x}$ is not of the appropriate form. See the next example for a case where both methods can be applied.

Example 97. (homework) Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 x}$.
(a) Using the method of undetermined coefficients.
(b) Using variation of constants.

Solution.

(a) We already did this in Example 88: The "old" roots are $-2,-2$. The "new" roots are 3. Hence, there has to be a particular solution of the form $y_{p}=C e^{3 x}$. To find the value of C, we plug into the DE.
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=(9+4 \cdot 3+4) C e^{3 x} \stackrel{!}{=} e^{3 x}$. Hence, $C=1 / 25$.
Therefore, the general solution is $y(x)=\frac{1}{25} e^{3 x}+\left(C_{1}+C_{2} x\right) e^{-2 x}$.
(b) This DE is of the form $L y=f(x)$ with $L=D^{2}+4 D+4$ and $f(x)=e^{3 x}$.

Since $L=(D+2)^{2}$, the homogeneous DE has the two solutions $y_{1}=e^{-2 x}, y_{2}=x e^{-2 x}$.
The corresponding Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{-2 x}(1-2 x) e^{-2 x}-\left(-2 e^{-2 x}\right) x e^{-2 x}=e^{-4 x}$.
By variation of parameters (Theorem 95), we find that a particular solution is

$$
\begin{aligned}
y_{p} & =-y_{1} \int \frac{y_{2} f}{W} \mathrm{~d} x+y_{2} \int \frac{y_{1} f}{W} \mathrm{~d} x \\
& =-e^{-2 x} \underbrace{\int x e^{5 x} \mathrm{~d} x}_{=\frac{1}{5} x e^{5 x}-\frac{1}{25} e^{5 x}}+x e^{-2 x} \underbrace{\int e^{5 x} \mathrm{~d} x}_{=\frac{1}{5} e^{5 x}}=\frac{1}{25} e^{3 x} .
\end{aligned}
$$

The general solution therefore is $\frac{1}{25} e^{3 x}+\left(C_{1}+C_{2} x\right) e^{-2 x}$, which matches what we got before.
Example 98. (homework) Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=7 e^{-2 x}$.
(a) Using the method of undetermined coefficients.
(b) Using variation of constants.

Solution.
(a) We already did this in Example 89: The "old" roots are -2, -2 . The "new" roots are -2 . Hence, there has to be a particular solution of the form $y_{p}=C x^{2} e^{-2 x}$. To find the value of C, we plug into the DE.
$y_{p}^{\prime}=C\left(-2 x^{2}+2 x\right) e^{-2 x}$
$y_{p}^{\prime \prime}=C\left(4 x^{2}-8 x+2\right) e^{-2 x}$
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=2 C e^{-2 x} \stackrel{!}{=} 7 e^{-2 x}$
It follows that $C=7 / 2$, so that $y_{p}=\frac{7}{2} x^{2} e^{-2 x}$. The general solution is $y(x)=\left(C_{1}+C_{2} x+\frac{7}{2} x^{2}\right) e^{-2 x}$.
(b) This DE is of the form $L y=f(x)$ with $L=D^{2}+4 D+4$ and $f(x)=7 e^{-2 x}$.

Since $L=(D+2)^{2}$, the homogeneous DE has the two solutions $y_{1}=e^{-2 x}, y_{2}=x e^{-2 x}$.
The corresponding Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{-2 x}(1-2 x) e^{-2 x}-\left(-2 e^{-2 x}\right) x e^{-2 x}=e^{-4 x}$.
By variation of parameters (Theorem 95), we find that a particular solution is

$$
\begin{aligned}
y_{p} & =-y_{1} \int \frac{y_{2} f}{W} \mathrm{~d} x+y_{2} \int \frac{y_{1} f}{W} \mathrm{~d} x \\
& =-e^{-2 x} \underbrace{\int 7 x \mathrm{~d} x}_{=\frac{7}{2} x^{2}}+x e^{-2 x} \underbrace{\int 7 \mathrm{~d} x}_{=7 x}=\frac{7}{2} x^{2} e^{-2 x} .
\end{aligned}
$$

The general solution therefore is $\frac{7}{2} x^{2} e^{-2 x}+\left(C_{1}+C_{2} x\right) e^{-2 x}$, which matches what we got before.

