Inhomogeneous linear DEs: The method of undetermined coefficients

The method of undetermined coefficients allows us to solve any inhomogeneous linear DE $L y=$ $f(x)$ with constant coefficients if $f(x)$ is a polynomial times an exponential (or a linear combination of such terms).
More precisely, $Q(x)$ needs to be a solution of a homogeneous linear DE with constant coefficients.
Example 85. Determine the general solution of $y^{\prime \prime}+4 y=12 x$.
Solution. The DE is $p(D) y=12 x$ with $p(D)=D^{2}+4$, which has roots $\pm 2 i$. Thus, the general solution is $y(x)=y_{p}(x)+C_{1} \cos (2 x)+C_{2} \sin (2 x)$. It remains to find a particular solution y_{p}.
Since $D^{2} \cdot(12 x)=0$, we apply D^{2} to both sides of the DE to get the homogeneous DE $D^{2}\left(D^{2}+4\right) \cdot y=0$.
Its general solution is $C_{1}+C_{2} x+C_{3} \cos (2 x)+C_{4} \sin (2 x)$ and y_{p} must be of this form. Indeed, there must be a particular solution of the simpler form $y_{p}=C_{1}+C_{2} x$ (because $C_{3} \cos (2 x)+C_{4} \sin (2 x)$ can be added to any y_{p}). It remains to find appropriate values C_{1}, C_{2} such that $y_{p}^{\prime \prime}+4 y_{p}=12 x$. Since $y_{p}^{\prime \prime}+4 y_{p}=4 C_{1}+4 C_{2} x$, comparing coefficients yields $4 C_{1}=0$ and $4 C_{2}=12$, so that $C_{1}=0$ and $C_{2}=3$. In other words, $y_{p}=3 x$.
Therefore, the general solution to the original DE is $y(x)=3 x+C_{1} \cos (2 x)+C_{2} \sin (2 x)$.
Example 86. Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 x}$.
Solution. The DE is $p(D) y=e^{3 x}$ with $p(D)=D^{2}+4 D+4=(D+2)^{2}$, which has roots $-2,-2$. Thus, the general solution is $y(x)=y_{p}(x)+\left(C_{1}+C_{2} x\right) e^{-2 x}$. It remains to find a particular solution y_{p}.
Since $(D-3) e^{3 x}=0$, we apply $(D-3)$ to the DE to get the homogeneous DE $(D-3)(D+2)^{2} y=0$.
Its general solution is $\left(C_{1}+C_{2} x\right) e^{-2 x}+C_{3} e^{3 x}$ and y_{p} must be of this form. Indeed, there must be a particular solution of the simpler form $y_{p}=C e^{3 x}$.
To determine the value of C, we plug into the original DE: $y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=(9+4 \cdot 3+4) C e^{3 x} \stackrel{!}{=} e^{3 x}$. Hence, $C=1 / 25$. Therefore, the general solution to the original DE is $y(x)=\left(C_{1}+C_{2} x\right) e^{-2 x}+\frac{1}{25} e^{3 x}$.

We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.
Our approach works for $p(D) y=f(x)$ whenever the right-hand side $f(x)$ is the solution of some homogeneous linear DE with constant coefficients: $q(D) f(x)=0$

Theorem 87. (method of undetermined coefficients) To find a particular solution y_{p} to an inhomogeneous linear DE with constant coefficients $p(D) y=f(x)$:

- Find $q(D)$ so that $q(D) f(x)=0$.
[This does not work for all $f(x)$.]
- It follows that y_{p} solves the homogeneous DE $q(D) p(D) y=0$.

The characteristic polynomial of this DE has roots:

- The roots r_{1}, \ldots, r_{n} of the polynomial $p(D)$ (the "old" roots).
- The roots s_{1}, \ldots, s_{m} of the polynomial $q(D)$ (the "new" roots).
- Let $y_{1}^{\text {new }}, \ldots, y_{m}^{\text {new }}$ be the "new" solutions (i.e. not solutions of the "old" $p(D) y=0$).

We plug into $p(D) y_{p}=f(x)$ to find (unique) C_{i} so that $y_{p}=C_{1} y_{1}^{\text {new }}+\ldots+C_{m} y_{m}^{\text {new }}$.
Because of the final step, this approach is often called method of undetermined coefficients.
For which $\boldsymbol{f}(\boldsymbol{x})$ does this work? By Theorem 70, we know exactly which $f(x)$ are solutions to homogeneous linear DEs with constant coefficients: these are linear combinations of exponentials $x^{j} e^{r x}$ (which includes $x^{j} e^{a x} \cos (b x)$ and $\left.x^{j} e^{a x} \sin (b x)\right)$.

Example 88. (again) Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 x}$.
Solution. The "old" roots are $-2,-2$. The "new" roots are 3 . Hence, there has to be a particular solution of the form $y_{p}=C e^{3 x}$. To find the value of C, we plug into the DE.
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=(9+4 \cdot 3+4) C e^{3 x} \stackrel{!}{=} e^{3 x}$. Hence, $C=1 / 25$.
Therefore, the general solution is $y(x)=\frac{1}{25} e^{3 x}+\left(C_{1}+C_{2} x\right) e^{-2 x}$.
Example 89. Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=7 e^{-2 x}$.
Solution. The "old" roots are $-2,-2$. The "new" roots are -2 . Hence, there has to be a particular solution of the form $y_{p}=C x^{2} e^{-2 x}$. To find the value of C, we plug into the DE .
$y_{p}^{\prime}=C\left(-2 x^{2}+2 x\right) e^{-2 x}$
$y_{p}^{\prime \prime}=C\left(4 x^{2}-8 x+2\right) e^{-2 x}$
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=2 C e^{-2 x} \stackrel{!}{=} 7 e^{-2 x}$
It follows that $C=7 / 2$, so that $y_{p}=\frac{7}{2} x^{2} e^{-2 x}$. The general solution is $y(x)=\left(C_{1}+C_{2} x+\frac{7}{2} x^{2}\right) e^{-2 x}$.

