Inhomogeneous linear DEs: The method of undetermined coefficients

The method of undetermined coefficients allows us to solve any inhomogeneous linear DE Ly = f(x) with constant coefficients if f(x) is a polynomial times an exponential (or a linear combination of such terms).

More precisely, Q(x) needs to be a solution of a homogeneous linear DE with constant coefficients.

Example 85. Determine the general solution of y'' + 4y = 12x.

Solution. The DE is p(D)y = 12x with $p(D) = D^2 + 4$, which has roots $\pm 2i$. Thus, the general solution is $y(x) = y_p(x) + C_1 \cos(2x) + C_2 \sin(2x)$. It remains to find a particular solution y_p .

Since $D^2 \cdot (12x) = 0$, we apply D^2 to both sides of the DE to get the **homogeneous** DE $D^2(D^2 + 4) \cdot y = 0$. Its general solution is $C_1 + C_2x + C_3\cos(2x) + C_4\sin(2x)$ and y_p must be of this form. Indeed, there must be a particular solution of the simpler form $y_p = C_1 + C_2x$ (because $C_3\cos(2x) + C_4\sin(2x)$ can be added to any y_p). It remains to find appropriate values C_1, C_2 such that $y_p'' + 4y_p = 12x$. Since $y_p'' + 4y_p = 4C_1 + 4C_2x$, comparing coefficients yields $4C_1 = 0$ and $4C_2 = 12$, so that $C_1 = 0$ and $C_2 = 3$. In other words, $y_p = 3x$. Therefore, the general solution to the original DE is $y(x) = 3x + C_1\cos(2x) + C_2\sin(2x)$.

Example 86. Determine the general solution of $y'' + 4y' + 4y = e^{3x}$.

Solution. The DE is $p(D)y = e^{3x}$ with $p(D) = D^2 + 4D + 4 = (D+2)^2$, which has roots -2, -2. Thus, the general solution is $y(x) = y_p(x) + (C_1 + C_2 x)e^{-2x}$. It remains to find a particular solution y_p .

Since $(D-3)e^{3x} = 0$, we apply (D-3) to the DE to get the homogeneous DE $(D-3)(D+2)^2y = 0$.

Its general solution is $(C_1 + C_2 x)e^{-2x} + C_3 e^{3x}$ and y_p must be of this form. Indeed, there must be a particular solution of the simpler form $y_p = Ce^{3x}$.

To determine the value of C, we plug into the original DE: $y_p'' + 4y_p' + 4y_p = (9 + 4 \cdot 3 + 4)Ce^{3x} \stackrel{!}{=} e^{3x}$. Hence, C = 1/25. Therefore, the general solution to the original DE is $y(x) = (C_1 + C_2 x)e^{-2x} + \frac{1}{25}e^{3x}$.

We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.

Our approach works for p(D)y = f(x) whenever the right-hand side f(x) is the solution of some homogeneous linear DE with constant coefficients: q(D)f(x) = 0

Theorem 87. (method of undetermined coefficients) To find a particular solution y_p to an inhomogeneous linear DE with constant coefficients p(D)y = f(x):

• Find q(D) so that q(D)f(x) = 0.

• It follows that y_p solves the **homogeneous** DE q(D) p(D)y = 0. The characteristic polynomial of this DE has roots:

- The roots $r_1, ..., r_n$ of the polynomial p(D) (the "old" roots).
- The roots $s_1, ..., s_m$ of the polynomial q(D) (the "new" roots).
- Let $y_1^{\text{new}}, ..., y_m^{\text{new}}$ be the "new" solutions (i.e. not solutions of the "old" p(D)y=0). We plug into $p(D)y_p = f(x)$ to find (unique) C_i so that $y_p = C_1y_1^{\text{new}} + ... + C_my_m^{\text{new}}$.

Because of the final step, this approach is often called **method of undetermined coefficients**.

For which f(x) does this work? By Theorem 70, we know exactly which f(x) are solutions to homogeneous linear DEs with constant coefficients: these are linear combinations of exponentials $x^{j}e^{rx}$ (which includes $x^{j}e^{ax}\cos(bx)$ and $x^{j}e^{ax}\sin(bx)$).

[This does not work for all f(x).]

Example 88. (again) Determine the general solution of $y'' + 4y' + 4y = e^{3x}$.

Solution. The "old" roots are -2, -2. The "new" roots are 3. Hence, there has to be a particular solution of the form $y_p = Ce^{3x}$. To find the value of C, we plug into the DE.

 $y_p'' + 4y_p' + 4y_p = (9 + 4 \cdot 3 + 4)Ce^{3x} \stackrel{!}{=} e^{3x}$. Hence, C = 1/25. Therefore, the general solution is $y(x) = \frac{1}{25}e^{3x} + (C_1 + C_2x)e^{-2x}$.

Example 89. Determine the general solution of $y'' + 4y' + 4y = 7e^{-2x}$.

Solution. The "old" roots are -2, -2. The "new" roots are -2. Hence, there has to be a particular solution of the form $y_p = Cx^2e^{-2x}$. To find the value of C, we plug into the DE.

$$y'_{p} = C(-2x^{2} + 2x)e^{-2x}$$

$$y''_{p} = C(4x^{2} - 8x + 2)e^{-2x}$$

 $y_p'' + 4y_p' + 4y_p = 2Ce^{-2x} \stackrel{!}{=} 7e^{-2x}$

It follows that C = 7/2, so that $y_p = \frac{7}{2}x^2e^{-2x}$. The general solution is $y(x) = \left(C_1 + C_2x + \frac{7}{2}x^2\right)e^{-2x}$.