Review. A linear DE of order n is of the form

$$y^{(n)} + P_{n-1}(x) y^{(n-1)} + \dots + P_1(x)y' + P_0(x)y = f(x).$$

The general solution of linear DE always takes the form

$$y(x) = y_p(x) + C_1 y_1(x) + \dots + C_n y_n(x),$$

where y_p is any solution (called a **particular solution**) and $y_1, y_2, ..., y_n$ are solutions to the corresponding **homogeneous** linear DE.

- In terms of $D = \frac{d}{dx}$, the DE becomes: Ly = f(x) with $L = D^n + P_{n-1}(x)D^{n-1} + \dots + P_1(x)D + P_0(x)$.
- The inclusion of the f(x) term makes Ly = f(x) an inhomogeneous linear DE. The corresponding homogeneous DE is Ly = 0 (note that the zero function y(x) = 0 is a solution of Ly = 0).
- *L* is called a **linear differential operator**.
 - $L(C_1y_1 + C_1y_2) = C_1Ly_1 + C_2Ly_2$ (linearity)

Comment. If you are familiar with linear algebra, think of L replaced with a matrix A and y_1, y_2 replaced with vectors v_1, v_2 . In that case, the same linearity property holds.

- So, if y_1 solves Ly = f(x), and y_2 solves Ly = g(x), then $C_1y_1 + C_2y_2$ solves $C_1f(x) + C_2g(x)$.
- In particular, if y_1 and y_2 solve the homogeneous DE, then so does any linear combination $C_1y_1 + C_2y_2$. This explains why, for any homogeneous linear DE of order n, there are n solutions $y_1, y_2, ..., y_n$ such that the general solution is $y(x) = C_1y_1(x) + ... + C_n y_n(x)$. Moreover, in that case, if we have a **particular solution** y_p of the inhomogeneous DE Ly = f(x), then $y_p + C_1y_1 + ... + C_n y_n$ is the general solution of Ly = f(x).

Example 82. (review) Find the general solution of y''' + 2y'' + y' = 0.

Solution. The characteristic polynomial $p(D) = D(D+1)^2$ has roots 0, 1, 1. Hence, the general solution is $A + (B + Cx)e^x$.

Example 83. (review) Find the general solution of $y^{(7)} + 8y^{(6)} + 42y^{(5)} + 104y^{(4)} + 169y^{\prime\prime\prime} = 0$. Use the fact that -2+3i is a repeated characteristic root.

Solution. The characteristic polynomial $p(D) = D^3(D^2 + 4D + 13)^2$ has roots $0, 0, 0, -2 \pm 3i, -2 \pm 3i$.

[Since -2+3i is a root so must be -2-3i. Repeating them once, together with 0, 0, 0 results in 7 roots.] Hence, the general solution is $(A + Bx + Cx^2) + (D + Ex)e^{-2x}\cos(3x) + (F + Gx)e^{-2x}\sin(3x)$.

Example 84. (preview) Determine the general solution of y'' + 4y = 12x. Hint: 3x is a solution. Solution. Here, $p(D) = D^2 + 4$. Because of the hint, we know that a particular solution is $y_p = 3x$. The homogeneous DE p(D)y = 0 has solutions $y_1 = \cos(2x)$ and $y_2 = \sin(2x)$. [Make sure this is clear!] Therefore, the general solution to the original DE is $y_p + C_1 y_1 + C_2 y_2 = 3x + C_1 \cos(2x) + C_2 \sin(2x)$.

Just to make sure. The DE in operator notation is Ly = f(x) with $L = D^2 + 4$ and f(x) = 12x. Next. How to find the particular solution $y_p = 3x$ ourselves.