Review. A linear DE of order n is of the form

$$
y^{(n)}+P_{n-1}(x) y^{(n-1)}+\ldots+P_{1}(x) y^{\prime}+P_{0}(x) y=f(x) .
$$

The general solution of linear DE always takes the form

$$
y(x)=y_{p}(x)+C_{1} y_{1}(x)+\ldots+C_{n} y_{n}(x)
$$

where y_{p} is any solution (called a particular solution) and $y_{1}, y_{2}, \ldots, y_{n}$ are solutions to the corresponding homogeneous linear $D E$.

- In terms of $D=\frac{\mathrm{d}}{\mathrm{d} x}$, the DE becomes: $L y=f(x)$ with $L=D^{n}+P_{n-1}(x) D^{n-1}+\ldots+P_{1}(x) D+P_{0}(x)$.
- The inclusion of the $f(x)$ term makes $L y=f(x)$ an inhomogeneous linear DE. The corresponding homogeneous DE is $L y=0$ (note that the zero function $y(x)=0$ is a solution of $L y=0$).
- L is called a linear differential operator.
- $L\left(C_{1} y_{1}+C_{1} y_{2}\right)=C_{1} L y_{1}+C_{2} L y_{2} \quad$ (linearity)

Comment. If you are familiar with linear algebra, think of L replaced with a matrix A and y_{1}, y_{2} replaced with vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$. In that case, the same linearity property holds.

- So, if y_{1} solves $L y=f(x)$, and y_{2} solves $L y=g(x)$, then $C_{1} y_{1}+C_{2} y_{2}$ solves $C_{1} f(x)+C_{2} g(x)$.
- In particular, if y_{1} and y_{2} solve the homogeneous DE, then so does any linear combination $C_{1} y_{1}+C_{2} y_{2}$. This explains why, for any homogeneous linear DE of order n, there are n solutions $y_{1}, y_{2}, \ldots, y_{n}$ such that the general solution is $y(x)=C_{1} y_{1}(x)+\ldots+C_{n} y_{n}(x)$. Moreover, in that case, if we have a particular solution y_{p} of the inhomogeneous DE $L y=f(x)$, then $y_{p}+C_{1} y_{1}+\ldots+C_{n} y_{n}$ is the general solution of $L y=f(x)$.

Example 82. (review) Find the general solution of $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.
Solution. The characteristic polynomial $p(D)=D(D+1)^{2}$ has roots $0,1,1$.
Hence, the general solution is $A+(B+C x) e^{x}$.
Example 83. (review) Find the general solution of $y^{(7)}+8 y^{(6)}+42 y^{(5)}+104 y^{(4)}+169 y^{\prime \prime \prime}=0$.
Use the fact that $-2+3 i$ is a repeated characteristic root.
Solution. The characteristic polynomial $p(D)=D^{3}\left(D^{2}+4 D+13\right)^{2}$ has roots $0,0,0,-2 \pm 3 i,-2 \pm 3 i$.
[Since $-2+3 i$ is a root so must be $-2-3 i$. Repeating them once, together with $0,0,0$ results in 7 roots.] Hence, the general solution is $\left(A+B x+C x^{2}\right)+(D+E x) e^{-2 x} \cos (3 x)+(F+G x) e^{-2 x} \sin (3 x)$.

Example 84. (preview) Determine the general solution of $y^{\prime \prime}+4 y=12 x$. Hint: $3 x$ is a solution.
Solution. Here, $p(D)=D^{2}+4$. Because of the hint, we know that a particular solution is $y_{p}=3 x$.
The homogeneous DE $p(D) y=0$ has solutions $y_{1}=\cos (2 x)$ and $y_{2}=\sin (2 x)$. [Make sure this is clear!]
Therefore, the general solution to the original DE is $y_{p}+C_{1} y_{1}+C_{2} y_{2}=3 x+C_{1} \cos (2 x)+C_{2} \sin (2 x)$.
Just to make sure. The DE in operator notation is $L y=f(x)$ with $L=D^{2}+4$ and $f(x)=12 x$.
Next. How to find the particular solution $y_{p}=3 x$ ourselves.

