Review. A homogeneous linear DE with constant coefficients is of the form $p(D) y=0$, where $p(D)$ is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k, we get the k solutions $x^{j} e^{r x}$ for $j=0,1, \ldots, k-1$.

Example 73. Determine the general solution of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$.
Solution. The characteristic polynomial $p(D)=D^{3}-3 D^{2}+3 D-1=(D-1)^{3}$ has roots $1,1,1$.
By Theorem 70, the general solution is $y(x)=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{x}$.
Example 74. Determine the general solution of $y^{\prime \prime \prime}-y^{\prime \prime}-5 y^{\prime}-3 y=0$.
Solution. The characteristic polynomial $p(D)=D^{3}-D^{2}-5 D-3=(D-3)(D+1)^{2}$ has roots $3,-1,-1$.
Hence, the general solution is $y(x)=C_{1} e^{3 x}+\left(C_{2}+C_{3} x\right) e^{-x}$.
Example 75. (homework) Solve the IVP $y^{\prime \prime \prime}=8 y^{\prime \prime}-16 y^{\prime}$ with $y(0)=1, y^{\prime}(0)=4, y^{\prime \prime}(0)=0$.
Solution. The characteristic polynomial $p(D)=D^{3}-8 D^{2}+16 D=D(D-4)^{2}$ has roots $0,4,4$.
By Theorem 70, the general solution is $y(x)=C_{1}+\left(C_{2}+C_{3} x\right) e^{4 x}$.
Using $y^{\prime}(x)=\left(4 C_{2}+C_{3}+4 C_{3} x\right) e^{4 x}$ and $y^{\prime \prime}(x)=4\left(4 C_{2}+2 C_{3}+4 C_{3} x\right) e^{4 x}$, the initial conditions result in the equations $C_{1}+C_{2}=1,4 C_{2}+C_{3}=4,16 C_{2}+8 C_{3}=0$.
Solving these (start with the last two equations) we find $C_{1}=-1, C_{2}=2, C_{3}=-4$.
Hence the unique solution to the IVP is $y(x)=-1+(2-4 x) e^{4 x}$.
Important comment. Check that $y(x)$ indeed solves the IVP.

Example 76. Determine the general solution of $y^{(6)}=3 y^{(5)}-4 y^{\prime \prime \prime}$.
Solution. This DE is of the form $p(D) y=0$ with $p(D)=D^{6}-3 D^{5}+4 D^{3}=D^{3}(D-2)^{2}(D+1)$.
The characteristic roots are $2,2,0,0,0,-1$.
By Theorem 70, the general solution is $y(x)=\left(C_{1}+C_{2} x\right) e^{2 x}+C_{3}+C_{4} x+C_{5} x^{2}+C_{6} e^{-x}$.
Example 77. Consider the function $y(x)=3 x e^{-2 x}+7 e^{x}$. Determine a homogeneous linear DE with constant coefficients of which $y(x)$ is a solution.
Solution. In order for $y(x)$ to be a solution of $p(D) y=0$, the characteristic roots must include $-2,-2,1$.
The simplest choice for $p(D)$ thus is $p(D)=(D+2)^{2}(D-1)=D^{3}+3 D^{2}-4$.
Accordingly, $y(x)$ is a solution of $y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0$.

Example 78. Consider the function $y(x)=3 x e^{-2 x}+7$. Determine a homogeneous linear DE with constant coefficients of which $y(x)$ is a solution.
Solution. In order for $y(x)$ to be a solution of $p(D) y=0$, the characteristic roots must include $-2,-2,0$.
The simplest choice for $p(D)$ thus is $p(D)=(D+2)^{2} D=D^{3}+4 D^{2}+4 D$.
Accordingly, $y(x)$ is a solution of $y^{\prime \prime \prime}+4 y^{\prime \prime}+4 y^{\prime}=0$.

Real form of complex solutions

Let's recall some basic facts about complex numbers:

- Every complex number can be written as $z=x+i y$ with real x, y.
- Here, the imaginary unit i is characterized by solving $x^{2}=-1$.

Important observation. The same equation is solved by $-i$. This means that, algebraically, we cannot distinguish between $+i$ and $-i$.

- The conjugate of $z=x+i y$ is $\bar{z}=x-i y$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \bar{z}. That's the reason why, in problems involving only real numbers, if a complex number $z=x+i y$ shows up, then its conjugate $\bar{z}=x-i y$ has to show up in the same manner. With that in mind, have another look at the examples below.

- The real part of $z=x+i y$ is x and we write $\operatorname{Re}(z)=x$.

Likewise the imaginary part is $\operatorname{Im}(z)=y$.
Observe that $\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$ as well as $\operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})$.

Theorem 79. (Euler's identity) $e^{i x}=\cos (x)+i \sin (x)$

Proof. Observe that both sides are the (unique) solution to the IVP $y^{\prime}=i y, y(0)=1$.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.]
Comment. It follows that $\cos (x)=\operatorname{Re}\left(e^{i x}\right)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$ and $\sin (x)=\operatorname{Im}\left(e^{i x}\right)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$.
Example 80. Determine the general solution of $y^{\prime \prime}+y=0$.
Solution. (complex numbers in general solution) The characteristic polynomial is $D^{2}+1$ which has no roots over the reals. Over the complex numbers, by definition, the roots are i and $-i$.
So the general solution is $y(x)=C_{1} e^{i x}+C_{2} e^{-i x}$.
Solution. (real general solution) On the other hand, we easily check that $y_{1}=\cos (x)$ and $y_{2}=\sin (x)$ are two solutions. Hence, the general solution can also be written as $y(x)=D_{1} \cos (x)+D_{2} \sin (x)$.

Important comment. That we have these two different representations is a consequence of Euler's identity (Theorem 79) by which $e^{ \pm i x}=\cos (x) \pm i \sin (x)$.
On the other hand, $\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$ and $\sin (x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$.
[Recall that the first formula is an instance of $\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$ and the second of $\operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})$.]
Example 81. Determine the general solution of $y^{\prime \prime}-4 y^{\prime}+13 y=0$ using only real numbers.
Solution. The characteristic polynomial $p(D)=D^{2}-4 D+13$ has roots $2+3 i, 2-3 i$.
[We can use the quadratic formula to find these roots as $\frac{4 \pm \sqrt{4^{2}-4 \cdot 13}}{2}=\frac{4 \pm \sqrt{-36}}{2}=\frac{4 \pm 6 i}{2}=2 \pm 3 i$.]
Hence, the general solution in real form is $y(x)=C_{1} e^{2 x} \cos (3 x)+C_{2} e^{2 x} \sin (3 x)$.
Note. $e^{(2 \pm 3 i) x}=e^{2 x} e^{ \pm 3 i x}=e^{2 x}(\cos (3 x) \pm i \sin (3 x))$

