Review. A homogeneous linear DE with constant coefficients is of the form p(D)y = 0, where p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k, we get the k solutions $x^{j}e^{rx}$ for j = 0, 1, ..., k - 1.

Example 73. Determine the general solution of y''' - 3y'' + 3y' - y = 0. Solution. The characteristic polynomial $p(D) = D^3 - 3D^2 + 3D - 1 = (D-1)^3$ has roots 1, 1, 1. By Theorem 70, the general solution is $y(x) = (C_1 + C_2x + C_3x^2)e^x$.

Example 74. Determine the general solution of y''' - y'' - 5y' - 3y = 0. Solution. The characteristic polynomial $p(D) = D^3 - D^2 - 5D - 3 = (D-3)(D+1)^2$ has roots 3, -1, -1. Hence, the general solution is $y(x) = C_1 e^{3x} + (C_2 + C_3 x) e^{-x}$.

Example 75. (homework) Solve the IVP y''' = 8y'' - 16y' with y(0) = 1, y'(0) = 4, y''(0) = 0.

Solution. The characteristic polynomial $p(D) = D^3 - 8D^2 + 16D = D(D-4)^2$ has roots 0, 4, 4. By Theorem 70, the general solution is $y(x) = C_1 + (C_2 + C_3 x)e^{4x}$. Using $y'(x) = (4C_2 + C_3 + 4C_3 x)e^{4x}$ and $y''(x) = 4(4C_2 + 2C_3 + 4C_3 x)e^{4x}$, the initial conditions result in the equations $C_1 + C_2 = 1$, $4C_2 + C_3 = 4$, $16C_2 + 8C_3 = 0$. Solving these (start with the last two equations) we find $C_1 = -1$, $C_2 = 2$, $C_3 = -4$. Hence the unique solution to the IVP is $y(x) = -1 + (2 - 4x)e^{4x}$.

Important comment. Check that y(x) indeed solves the IVP.

Example 76. Determine the general solution of $y^{(6)} = 3y^{(5)} - 4y'''$. Solution. This DE is of the form $p(D) \ y = 0$ with $p(D) = D^6 - 3D^5 + 4D^3 = D^3(D-2)^2(D+1)$. The characteristic roots are 2, 2, 0, 0, 0, -1. By Theorem 70, the general solution is $y(x) = (C_1 + C_2 x)e^{2x} + C_3 + C_4 x + C_5 x^2 + C_6 e^{-x}$.

Example 77. Consider the function $y(x) = 3xe^{-2x} + 7e^x$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y = 0, the characteristic roots must include -2, -2, 1. The simplest choice for p(D) thus is $p(D) = (D+2)^2(D-1) = D^3 + 3D^2 - 4$. Accordingly, y(x) is a solution of y''' + 3y'' - 4y = 0.

Example 78. Consider the function $y(x) = 3xe^{-2x} + 7$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y = 0, the characteristic roots must include -2, -2, 0. The simplest choice for p(D) thus is $p(D) = (D+2)^2D = D^3 + 4D^2 + 4D$. Accordingly, y(x) is a solution of y''' + 4y'' + 4y' = 0.

Real form of complex solutions

Let's recall some basic facts about **complex numbers**:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.

Important observation. The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.

• The conjugate of z = x + iy is $\overline{z} = x - iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \overline{z} . That's the reason why, in problems involving only real numbers, if a complex number z = x + iy shows up, then its **conjugate** $\overline{z} = x - iy$ has to show up in the same manner. With that in mind, have another look at the examples below.

• The real part of z = x + iy is x and we write $\operatorname{Re}(z) = x$.

Likewise the **imaginary part** is Im(z) = y.

Observe that $\operatorname{Re}(z) = \frac{1}{2}(z+\bar{z})$ as well as $\operatorname{Im}(z) = \frac{1}{2i}(z-\bar{z})$.

Theorem 79. (Euler's identity) $e^{ix} = \cos(x) + i\sin(x)$

Proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1.

[Check that by computing the derivatives and verifying the initial condition! As we did in class.]

Comment. It follows that $\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

Example 80. Determine the general solution of y'' + y = 0.

Solution. (complex numbers in general solution) The characteristic polynomial is $D^2 + 1$ which has no roots over the reals. Over the complex numbers, by definition, the roots are i and -i. So the general solution is $y(x) = C_1 e^{ix} + C_2 e^{-ix}$.

Solution. (real general solution) On the other hand, we easily check that $y_1 = \cos(x)$ and $y_2 = \sin(x)$ are two solutions. Hence, the general solution can also be written as $y(x) = D_1 \cos(x) + D_2 \sin(x)$.

Important comment. That we have these two different representations is a consequence of Euler's identity (Theorem 79) by which $e^{\pm ix} = \cos(x) \pm i \sin(x)$.

On the other hand, $\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

[Recall that the first formula is an instance of $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and the second of $\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$.]

Example 81. Determine the general solution of y'' - 4y' + 13y = 0 using only real numbers. Solution. The characteristic polynomial $p(D) = D^2 - 4D + 13$ has roots 2 + 3i, 2 - 3i.

[We can use the quadratic formula to find these roots as $\frac{4 \pm \sqrt{4^2 - 4 \cdot 13}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$.] Hence, the general solution in real form is $y(x) = C_1 e^{2x} \cos(3x) + C_2 e^{2x} \sin(3x)$. Note. $e^{(2\pm 3i)x} = e^{2x} e^{\pm 3ix} = e^{2x} (\cos(3x) \pm i \sin(3x))$