Mixing problems

Example 51. A tank contains 20gal of pure water. It is filled with brine (containing 5lb/gal salt) at a rate of $3 \mathrm{gal} / \mathrm{min}$. At the same time, well-mixed solution flows out at a rate of $2 \mathrm{gal} / \mathrm{min}$. How much salt is in the tank after t minutes?

Solution.

(Part I. determining a DE) Let $x(t)$ denote the amount of salt (in Ib) in the tank after time t (in min).
At time t, the concentration of salt (in lb/gal) in the tank is $\frac{x(t)}{V(t)}$ where $V(t)=20+(3-2) t=20+t$ is the volume (in gal) in the tank.
In the time interval $[t, t+\Delta t]: \quad \Delta x \approx 3 \cdot 5 \cdot \Delta t-2 \cdot \frac{x(t)}{V(t)} \cdot \Delta t$.
Hence, $x(t)$ solves the IVP $\frac{\mathrm{d} x}{\mathrm{~d} t}=15-2 \cdot \frac{x}{20+t}$ with $x(0)=0$.
Comment. Can you explain why the equation for Δx is only approximate but why the final DE is exact?
[Hint: $x(t) / V(t)$ is the concentration at time t but we are using it for Δx at other times as well.]
(Part II. solving the DE) Since this is a linear DE, we can solve it as follows:

- Write the DE in the standard form as $\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{2}{20+t} x=15$.
- The integrating factor is $f(t)=\exp \left(\int \frac{2}{20+t} \mathrm{~d} t\right)=\exp (2 \ln |20+t|)=(20+t)^{2}$.
- Multiply the DE (in standard form) by $f(t)=(20+t)^{2}$ to get $(20+t)^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2(20+t) x=15(20+t)^{2}$.

$$
=\frac{\mathrm{d}}{\mathrm{~d} t}\left[(20+t)^{2} x\right]
$$

- Integrate both sides to get $(20+t)^{2} x=15 \int(20+t)^{2} \mathrm{~d} t=5(20+t)^{3}+C$.

Hence the general solution to the DE is $x(t)=5(20+t)+\frac{C}{(20+t)^{2}}$. Using $x(0)=0$, we find $C=-5 \cdot 20^{3}$. We conclude that, after t minutes, the tank contains $x(t)=5(20+t)-\frac{5 \cdot 20^{3}}{(20+t)^{2}}$ pounds of salt.
Comment. As a consequence, $x(t) \approx 5(20+t)=5 V(t)$ for large t. Can you explain why that makes perfect sense and why we could have predicted this from the very beginning (without deriving a DE and solving it)?

