
Notes for Lecture 10 Fri, 9/15/2023

Solving simple 2nd order DEs

We have the following two useful substitutions for certain simple DEs of order 2:

� F (y 00; y 0; x)= 0 (2nd order with �y missing�)

Set u= y0=
dy

dx
. Then y 00= du

dx
. We get the first-order DE F

�
du

dx
; u; x

�
=0.

� F (y 00; y 0; y)= 0 (2nd order with �x missing�)

Set u= y0=
dy

dx
. Then y 00= du

dx
=
du

dy
� dy
dx
=
du

dy
�u. We get the first-order DE F

�
u
du

dy
; u; y

�
=0.

Example 40. Solve y 00=x¡ y 0.
Solution. We substitute u= y0, which results in the first-order DE u0= x¡u.
This DE is linear and, using our recipe (see below for the details), we can solve it to find u=x¡ 1+Ce¡x.

Since y 0=u, we conclude that the general solution is y=
Z
(x¡ 1+Ce¡x)dx=

1
2
x2¡ x¡Ce¡x+D.

Important comment. This is a DE of order 2. Hence, as expected, the general solution has two free parameter.
Solving the linear DE. To solve u0= x¡u (also see Example 30, where we had solved this DE before), we

(a) rewrite the DE as du
dx
+P (x)u=Q(x) with P (x)= 1 and Q(x)=x.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= ex.

(c) Multiply the (rewritten) DE by f(x)= ex to get exdu
dx

+ exu

=
d
dx
[exu]

= xex.

(d) Integrate both sides to get (using integration by parts): exu=
Z
xexdx= xex¡ ex+C

Hence, the general solution of the DE for u is u=x¡ 1+Ce¡x, which is what we used above.

Example 41. (homework) Solve the IVP y 00=x¡ y 0, y(0)=1, y 0(0)= 2.

Solution. As in the previous example, we find that the general solution to the DE is y(x)= 1
2
x2¡x¡Ce¡x+D.

Using y 0(x)= x¡ 1+Ce¡x and y 0(0)=2, we find that 2=¡1+C. Hence, C=3.

Then, using y(x)= 1
2
x2¡ x¡ 3e¡x+D and y(0)= 1, we find 1=¡3+D. Hence, D=4.

In conclusion, the unique solution to the IVP is y(x)= 1
2
x2¡x¡ 3e¡x+4.

Example 42. (extra) Find the general solution to y 00=2yy 0.
Solution. We substitute u= y0=

dy

dx
. Then y 00= du

dx
=
du

dy
� dy
dx
=
du

dy
�u.

Therefore, our DE turns into u du

dy
=2yu.

Dividing by u, we get du
dy
=2y. [Note that we lose the solution u=0, which gives the singular solution y=C.]

Hence, u= y2+C. It remains to solve y 0= y2+C. This is a separable DE.
1

C+ y2
dy=dx. Let us restrict to C=D2>0 here. (This means we will only find �half� of the solutions.)R 1

D2+ y2
dy=

1

D2

R 1

1+ (y/D)2
dy=

1

D
arctan(y/D)=x+A.

Solving for y, we find y=D tan(Dx+AD)=D tan(Dx+B). [B=AD]
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Applications of DEs & Modeling

The exponential model of population growth

If P (t) is the size of a population (eg. of bacteria) at time t, then the rate of change dP

dt
might,

from biological considerations, be (nearly) proportional to P (t).
Why? This might be more clear if we use some (random) numbers. Say, we have a population of P = 100 and
P 0=3, meaning that the population changes by 3 individuals per unit of time. By how do we expect a population
of P = 500 to change? (Think about it for a moment!)
[Without further information, we would probably expect the population of P = 500 to change by 5 � 3 = 15
individuals per unit of time, so that P 0=15 in that case. This is what it means for P 0 to be proportional to P .
In formulas, it means that P 0/P is constant or, equivalently, that P 0= kP for a proportionality constant k.]
Comment. �Population� might sound more specific than it is. It could also refer to rather different populations
such as amounts of money (finance) or amounts of radioactive material (physics).

For instance, thinking about an amount P (t) of money in a bank account at time t, we would also expect dP
dt

(the money per time that we gain from receiving interest) to be proportional to P (t).

The correspondingmathematical model is described by the DE dP

dt
=kP where k is the constant

of proportionality.

Example 43. Determine all solutions to the DE dP

dt
= kP .

Solution. We easily guess and then verify that P (t)=Cekt is a solution. (Alternatively, we can find this solution
via separation of variables or because this is a linear DE. Do it both ways!)
Moreover, it follows from the existence and uniqueness theorem that there cannot be further solutions. (Alter-
natively, we can conclude this from our solving process (separation of variables or our approach to linear DEs
only lose solutions when we divide by zero and we can consider those cases separately)).

Mathematics therefore tells us that the (only) solutions to this DE are given by P (t)=Cekt where
C is some constant.
Hence, populations satisfying the assumption from biology necessarily exhibit exponential growth.

Example 44. Let P (t) describe the size of a population at time t. Suppose P (0) = 100 and
P (1)= 300. Under the exponential model of population growth, find P (t).
Solution. P (t) solves the DE dP

dt
= kP and therefore is of the form P (t)=Cekt.

We now use the two data points to determine both C and k.

Cek�0=C = 100 and Cek= 100ek= 300. Hence k= ln(3) and P (t)= 100eln(3)t= 100 � 3t.

Main challenge of modeling: a model has to be detailed enough to resemble the real world, yet
simple enough to allow for mathematical analysis.
Observe that the exponential model of population growth can be written as

P 0

P
= constant:

Thinking purely mathematically (generally not a good idea for modeling!), to extend the model, it might be
sensible to replace constant (which we called k above) by the next simplest kind of function, namely a linear
function in P . The resulting
Comment. Can you put into words why we replace constant by a function of P rather than a function of t?
When would it be appropriate to add a dependence on t?
[A dependence on t would make sense if the �environment� changes over time. Without such a change, we expect
that a population (say, of bacteria in our lab) behaves this week just as it would next week. The �law� behind
its growth should not depend on t. The resulting differential equations are called autonomous.]

Armin Straub
straub@southalabama.edu

22


