
Notes for Lecture 6 Wed, 9/6/2023

Review. Existence and uniqueness theorem (Theorem 22) for an IVP y 0= f(x; y), y(a)= b:

If f(x; y) and @

@y
f(x; y) are continuous around (a; b) then, locally, the IVP has a unique solution.

Example 23. Consider, again, the IVP y 0 = ¡x/ y, y(a) = b.
Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y 0= f(x; y) with f(x; y)=¡x/y.
We compute that @

@y
f(x; y)=x/y2.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y)

with y=/ 0.
Hence, if b=/ 0, then the IVP locally has a unique solution by the existence
and uniqueness theorem.
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Comment. In Example 14, we found that the DE y 0=¡x/y is solved by y(x)=� D¡x2
p

.

Assume b > 0 (things work similarly for b < 0). Then y(x) = D¡x2
p

solves the IVP (we need to choose D
so that y(a) = b) if we choose D = a2 + b2. This confirms that there exists a solution. On the other hand,
uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case b=0?
Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If a =/ 0, then
y(x)= a2¡x2

p
and y(x)=¡ a2¡ x2

p
both solve the IVP (so we certainly don't have uniqueness), however

only in a weak sense: namely, both of these solutions are not valid locally around x= a but only in an interval
of which a is an endpoint (for instance, the IVP y 0=¡x/y, y(2)=0 is solved by y(x)=� 4¡x2

p
but both

of these solutions are only valid on the interval [¡2; 2] which ends at 2, and neither of these solutions can be
extended past 2).

Example 24. Consider, again, the IVP xy 0 = 2y, y(a) = b.
Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y 0= f(x; y) with f(x; y)= 2y/x.

We compute that @

@y
f(x; y)= 2/x.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y)

with x=/ 0.
Hence, if a=/ 0, then the IVP locally has a unique solution by the existence
and uniqueness theorem.
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What happens in the case a=0?
Solution. In Example 16, we found that the DE xy 0=2y is solved by y(x)=Cx2.
This means that the IVP with y(0)=0 has infinitely many solutions.
On the other hand, the IVP with y(0)= b where b=/ 0 has no solutions. (This follows from the fact that there
are no solutions to the DE besides y(x)=Cx2. Can you see this by looking at the slope field?)
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Example 25. Consider the IVP y 0=ky2, y(a)= b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y 0= f(x; y) with f(x; y)= ky2. We compute that @

@y
f(x; y)= 2ky.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 26. Solve y 0= ky2.

Solution. Separate variables to get 1

y2
dy

dx
= k.

Integrating
R 1

y2
dy=

R
kdx, we find ¡1

y
= kx+C.

We solve for y to get y=¡ 1

C + kx
=

1

D¡ kx (with D=¡C). That is the solution we verified earlier!

Comment. Note that we did not find the solution y = 0 (it was �lost� when we divided by y2). It is called a
singular solution because it is not part of the general solution (the one-parameter family found above). However,
note that we can obtain it from the general solution by letting D!1.
Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division
by y2 made us lose a solution, other transformations can add extra solutions which do not solve the original DE.
Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point.
The DE (y ¡ 1)y0= (y ¡ 1)ky2 has the same solutions as y 0= ky2 plus the additional solution y= 1 (which
does not solve y 0= ky2).

Example 27. (extra) Solve the IVP y 0= y2, y(0)= 1.
Solution. From the previous example with k=1, we know that y(x)= 1

D¡x .

Using y(0)=1, we find that D=1 so that the unique solution to the IVP is y(x) = 1

1¡x .

Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.
On the other hand, note that y(x)= 1

1¡x is only valid on (¡1;1) and that it cannot be continuously extended
past x=1; it is only a local solution.

Example 28. (homework) Consider the IVP (x¡ y2)y 0=3x, y(4)= b. For which choices of b
does the existence and uniqueness theorem guarantee a unique (local) solution?

Solution. The IVP is y 0= f(x; y) with f(x; y)=3x/(x¡ y2). We compute that @

@y
f(x; y)=6xy/(x¡ y2)2.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y) with x¡ y2=/ 0.

Note that 4¡ b2=/ 0 is equivalent to b=/ �2.
Hence, if b=/ �2, then the IVP locally has a unique solution by the existence and uniqueness theorem.
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