Review. Existence and uniqueness theorem (Theorem 22) for an IVP $y^{\prime}=f(x, y), y(a)=b$ : If $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous around $(a, b)$ then, locally, the IVP has a unique solution.

Example 23. Consider, again, the IVP $y^{\prime}=-x / y, y(a)=b$. Discuss existence and uniqueness of solutions (without solving).
Solution. The IVP is $y^{\prime}=f(x, y)$ with $f(x, y)=-x / y$.
We compute that $\frac{\partial}{\partial y} f(x, y)=x / y^{2}$.
We observe that both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all $(x, y)$ with $y \neq 0$.
Hence, if $b \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.


Comment. In Example 14, we found that the DE $y^{\prime}=-x / y$ is solved by $y(x)= \pm \sqrt{D-x^{2}}$.
Assume $b>0$ (things work similarly for $b<0$ ). Then $y(x)=\sqrt{D-x^{2}}$ solves the IVP (we need to choose $D$ so that $y(a)=b$ ) if we choose $D=a^{2}+b^{2}$. This confirms that there exists a solution. On the other hand, uniqueness means that there can be no other solution to the IVP than this one.
What happens in the case $b=0$ ?
Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If $a \neq 0$, then $y(x)=\sqrt{a^{2}-x^{2}}$ and $y(x)=-\sqrt{a^{2}-x^{2}}$ both solve the IVP (so we certainly don't have uniqueness), however only in a weak sense: namely, both of these solutions are not valid locally around $x=a$ but only in an interval of which $a$ is an endpoint (for instance, the IVP $y^{\prime}=-x / y, y(2)=0$ is solved by $y(x)= \pm \sqrt{4-x^{2}}$ but both of these solutions are only valid on the interval $[-2,2]$ which ends at 2 , and neither of these solutions can be extended past 2 ).

Example 24. Consider, again, the IVP $x y^{\prime}=2 y, y(a)=b$. Discuss existence and uniqueness of solutions (without solving).
Solution. The IVP is $y^{\prime}=f(x, y)$ with $f(x, y)=2 y / x$.
We compute that $\frac{\partial}{\partial y} f(x, y)=2 / x$.
We observe that both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all $(x, y)$ with $x \neq 0$.
Hence, if $a \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.


What happens in the case $a=0$ ?
Solution. In Example 16, we found that the DE $x y^{\prime}=2 y$ is solved by $y(x)=C x^{2}$.
This means that the IVP with $y(0)=0$ has infinitely many solutions.
On the other hand, the IVP with $y(0)=b$ where $b \neq 0$ has no solutions. (This follows from the fact that there are no solutions to the DE besides $y(x)=C x^{2}$. Can you see this by looking at the slope field?)

Example 25. Consider the IVP $y^{\prime}=k y^{2}, y(a)=b$. Discuss existence and uniqueness of solutions.
Solution. The IVP is $y^{\prime}=f(x, y)$ with $f(x, y)=k y^{2}$. We compute that $\frac{\partial}{\partial y} f(x, y)=2 k y$.
We observe that both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all $(x, y)$.
Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 26. Solve $y^{\prime}=k y^{2}$.
Solution. Separate variables to get $\frac{1}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=k$.
Integrating $\int \frac{1}{y^{2}} \mathrm{~d} y=\int k \mathrm{~d} x$, we find $-\frac{1}{y}=k x+C$.
We solve for $y$ to get $y=-\frac{1}{C+k x}=\frac{1}{D-k x}$ (with $D=-C$ ). That is the solution we verified earlier!
Comment. Note that we did not find the solution $y=0$ (it was "lost" when we divided by $y^{2}$ ). It is called a singular solution because it is not part of the general solution (the one-parameter family found above). However, note that we can obtain it from the general solution by letting $D \rightarrow \infty$.
Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division by $y^{2}$ made us lose a solution, other transformations can add extra solutions which do not solve the original DE. Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point. The DE $(y-1) y^{\prime}=(y-1) k y^{2}$ has the same solutions as $y^{\prime}=k y^{2}$ plus the additional solution $y=1$ (which does not solve $y^{\prime}=k y^{2}$ ).

Example 27. (extra) Solve the IVP $y^{\prime}=y^{2}, y(0)=1$.
Solution. From the previous example with $k=1$, we know that $y(x)=\frac{1}{D-x}$.
Using $y(0)=1$, we find that $D=1$ so that the unique solution to the IVP is $y(x)=\frac{1}{1-x}$.
Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.
On the other hand, note that $y(x)=\frac{1}{1-x}$ is only valid on $(-\infty, 1)$ and that it cannot be continuously extended past $x=1$; it is only a local solution.

Example 28. (homework) Consider the IVP $\left(x-y^{2}\right) y^{\prime}=3 x, y(4)=b$. For which choices of $b$ does the existence and uniqueness theorem guarantee a unique (local) solution?
Solution. The IVP is $y^{\prime}=f(x, y)$ with $f(x, y)=3 x /\left(x-y^{2}\right)$. We compute that $\frac{\partial}{\partial y} f(x, y)=6 x y /\left(x-y^{2}\right)^{2}$. We observe that both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all $(x, y)$ with $x-y^{2} \neq 0$.
Note that $4-b^{2} \neq 0$ is equivalent to $b \neq \pm 2$.
Hence, if $b \neq \pm 2$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

