Review. Existence and uniqueness theorem (Theorem 22) for an IVP y' = f(x, y), y(a) = b: If f(x, y) and $\frac{\partial}{\partial y} f(x, y)$ are continuous around (a, b) then, locally, the IVP has a unique solution.

Example 23. Consider, again, the IVP y' = -x / y, y(a) = b. Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y' = f(x, y) with f(x, y) = -x/y.

We compute that $\frac{\partial}{\partial y} f(x, y) = x / y^2$.

We observe that both f(x, y) and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y) with $y \neq 0$.

Hence, if $b \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Comment. In Example 14, we found that the DE y' = -x/y is solved by $y(x) = \pm \sqrt{D - x^2}$.

Assume b > 0 (things work similarly for b < 0). Then $y(x) = \sqrt{D - x^2}$ solves the IVP (we need to choose D so that y(a) = b) if we choose $D = a^2 + b^2$. This confirms that there exists a solution. On the other hand, uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case b = 0?

Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If $a \neq 0$, then $y(x) = \sqrt{a^2 - x^2}$ and $y(x) = -\sqrt{a^2 - x^2}$ both solve the IVP (so we certainly don't have uniqueness), however only in a weak sense: namely, both of these solutions are not valid locally around x = a but only in an interval of which a is an endpoint (for instance, the IVP y' = -x/y, y(2) = 0 is solved by $y(x) = \pm \sqrt{4 - x^2}$ but both of these solutions are only valid on the interval [-2, 2] which ends at 2, and neither of these solutions can be extended past 2).

Example 24. Consider, again, the IVP xy' = 2y, y(a) = b. Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y' = f(x, y) with f(x, y) = 2y/x.

We compute that $\frac{\partial}{\partial y} f(x, y) = 2/x$.

We observe that both f(x, y) and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y) with $x \neq 0$.

Hence, if $a \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

What happens in the case a = 0?

Solution. In Example 16, we found that the DE xy' = 2y is solved by $y(x) = Cx^2$.

This means that the IVP with y(0) = 0 has infinitely many solutions.

On the other hand, the IVP with y(0) = b where $b \neq 0$ has no solutions. (This follows from the fact that there are no solutions to the DE besides $y(x) = Cx^2$. Can you see this by looking at the slope field?)

Example 25. Consider the IVP $y' = ky^2$, y(a) = b. Discuss existence and uniqueness of solutions. Solution. The IVP is y' = f(x, y) with $f(x, y) = ky^2$. We compute that $\frac{\partial}{\partial y}f(x, y) = 2ky$.

We observe that both f(x,y) and $\frac{\partial}{\partial y}f(x,y)$ are continuous for all (x,y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 26. Solve $y' = ky^2$.

Solution. Separate variables to get $\frac{1}{y^2} \frac{dy}{dx} = k$.

Integrating $\int \frac{1}{y^2} \mathrm{d}y = \int k \, \mathrm{d}x$, we find $-\frac{1}{y} = kx + C$.

We solve for y to get $y = -\frac{1}{C+kx} = \frac{1}{D-kx}$ (with D = -C). That is the solution we verified earlier!

Comment. Note that we did not find the solution y = 0 (it was "lost" when we divided by y^2). It is called a singular solution because it is not part of the general solution (the one-parameter family found above). However, note that we can obtain it from the general solution by letting $D \to \infty$.

Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division by y^2 made us lose a solution, other transformations can add extra solutions which do not solve the original DE. Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point. The DE $(y-1)y' = (y-1)ky^2$ has the same solutions as $y' = ky^2$ plus the additional solution y = 1 (which does not solve $y' = ky^2$).

Example 27. (extra) Solve the IVP $y' = y^2$, y(0) = 1.

Solution. From the previous example with k = 1, we know that $y(x) = \frac{1}{D-x}$.

Using y(0) = 1, we find that D = 1 so that the unique solution to the IVP is $y(x) = \frac{1}{1-x}$.

Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.

On the other hand, note that $y(x) = \frac{1}{1-x}$ is only valid on $(-\infty, 1)$ and that it cannot be continuously extended past x = 1; it is only a local solution.

Example 28. (homework) Consider the IVP $(x - y^2)y' = 3x$, y(4) = b. For which choices of b does the existence and uniqueness theorem guarantee a unique (local) solution?

Solution. The IVP is y' = f(x, y) with $f(x, y) = 3x/(x - y^2)$. We compute that $\frac{\partial}{\partial y}f(x, y) = 6xy/(x - y^2)^2$. We observe that both f(x, y) and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y) with $x - y^2 \neq 0$. Note that $4 - b^2 \neq 0$ is equivalent to $b \neq \pm 2$.

Hence, if $b \neq \pm 2$, then the IVP locally has a unique solution by the existence and uniqueness theorem.