Example 10. (warmup) Consider the $\mathrm{DE} y^{\prime \prime}=y^{\prime}+6 y$.
(a) Is $y(x)=e^{2 x}$ a solution?
(b) Is $y(x)=e^{3 x}$ a solution?

Solution.
(a) $y^{\prime}=2 e^{2 x}$ and $y^{\prime \prime}=4 e^{2 x}$.

Since $y^{\prime}+6 y=8 e^{2 x}$ is different from $y^{\prime \prime}=4 e^{2 x}$, we conclude that $y(x)=e^{2 x}$ is not a solution.
(b) $y^{\prime}=3 e^{3 x}$ and $y^{\prime \prime}=9 e^{3 x}$.

Since $y^{\prime}+6 y=9 e^{3 x}$ is equal to $y^{\prime \prime}=9 e^{3 x}$, we conclude that $y(x)=e^{3 x}$ is a solution of the DE.
Example 11. (cont'd) Consider the DE $y^{\prime \prime}=y^{\prime}+6 y$. For which r is $e^{r x}$ a solution?
Solution. If $y(x)=e^{r x}$, then $y^{\prime}(x)=r e^{r x}$ and $y^{\prime \prime}(x)=r^{2} e^{r x}$.
Plugging $y(x)=e^{r x}$ into the DE, we get $r^{2} e^{r x}=r e^{r x}+6 e^{r x}$ which simplifies to $r^{2}=r+6$.
This has the two solutions $r=-2, r=3$. Hence $e^{-2 x}$ and $e^{3 x}$ are solutions of the DE.
In fact, we check that $A e^{-2 x}+B e^{3 x}$ is a two-parameter family of solutions to the DE.
Important comment. It is no coincidence that the order of the DE is 2 , whereas the previous example has order 1. In general, we expect a DE of order r to have a solution with r parameters.

Example 12. (extra)

Comment. In this example, we use $x(t)$ instead of $y(x)$ for the function described by the differential equation. In general, of course, any choice of variable names is possible. If we write something like x^{\prime} or y^{\prime} it needs to be clear from the context with respect to which variable that derivative is meant (such as $x^{\prime}=\frac{\mathrm{d}}{\mathrm{d} t} x(t)$).
(a) Verify that $x(t)=\frac{1}{c-k t}$ is a one-parameter family of solutions to the $\mathrm{DE} \frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{2}$.
(b) Solve the IVP $\frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{2}, x(0)=2$.
(c) Solve the IVP $\frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{2}, x(0)=0$.

Solution.

(a) We compute that $\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{(c-k t)^{2}} \cdot(-k)=\frac{k}{(c-k t)^{2}}$.

On the other hand, $k x^{2}=k\left(\frac{1}{c-k t}\right)^{2}=\frac{k}{(c-k t)^{2}}$ as well. Thus, indeed, $\frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{2}$.
(b) We start with $x(t)=\frac{1}{c-k t}$ (which we know solves the DE for any value of c) and seek to choose c so that $x(0)=2$.
Since $x(0)=\left[\frac{1}{c-k t}\right]_{t=0}=\frac{1}{c} \stackrel{!}{=} 2$, we find $c=\frac{1}{2}$.
Hence, the IVP has the (unique) solution $x(t)=\frac{1}{1 / 2-k t}$.
(c) Proceeding as in the previous part, we now arrive at the impossible equation $\frac{1}{c} \stackrel{!}{=} 0$.

However, this suggests that we should consider taking $c \rightarrow \infty$ in $x(t)=\frac{1}{c-k t}$, which results in $x(t)=0$. Indeed, it is easy to verify (make sure you know what this entails!) that $x(t)=0$ solves the IVP.

Slope fields, or sketching solutions to DEs

Example 13. Consider the DE $y^{\prime}=-x / y$.
Let's pick a point, say, $(1,2)$. If a solution $y(x)$ is passing through that point, then its slope has to be $y^{\prime}=-1 / 2$. We therefore draw a small line through the point $(1,2)$ with slope $-1 / 2$. Continuing in this fashion for several other points, we obtain the slope field on the right.
With just a little bit of imagination, we can now anticipate the solutions to look like (half)circles around the origin. Let us check whether $y(x)=\sqrt{r^{2}-x^{2}}$ might indeed be a solution!

$y^{\prime}(x)=\frac{1}{2} \frac{-2 x}{\sqrt{r^{2}-x^{2}}}=-x / y(x)$. So, yes, we actually found solutions!

Solving DEs: Separation of variables

Example 14. Solve the $\mathrm{DE} y^{\prime}=-\frac{x}{y}$.
Solution. Rewrite the DE as $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}$.
Separate the variables to get $y \mathrm{~d} y=-x \mathrm{~d} x$ (in particular, we are multiplying both sides by $\mathrm{d} x$).
Integrating both sides, we get $\int y \mathrm{~d} y=\int-x \mathrm{~d} x$.
Computing both integrals results in $\frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C$ (we combine the two constants of integration into one).
Hence $x^{2}+y^{2}=D$ (with $D=2 C$).
This is an implicit form of the solutions to the DE. We can make it explicit by solving for y. Doing so, we find $y(x)= \pm \sqrt{D-x^{2}}$ (choosing + gives us the upper half of a circle, while the negative sign gives us the lower half).
Comment. The step above where we break $\frac{\mathrm{d} y}{\mathrm{~d} x}$ apart and then integrate may sound sketchy!
However, keep in mind that, after we find a solution $y(x)$, even if by sketchy means, we can (and should!) verify that $y(x)$ is indeed a solution by plugging into the DE. We actually already did that in the previous example!

