Example 5. (cont'd) Determine several (random) DEs that $y(x) = \sin(3x)$ solves.

Solution.

(a) We compute $y'(x) = 3\cos(3x)$.

Accordingly, $y(x) = \sin(3x)$ solves the DE $y' = 3\cos(3x)$.

Comment. Note that there are further solutions to this DE: the general solution is $\int 3\cos(3x) dx = \sin(3x) + C$ where C is any constant. We say that $y(x) = \sin(3x) + C$ is a one-parameter family of solutions to the DE. C is called a degree of freedom.

(b) As last time, we note that $\cos(3x) = 3\sqrt{1 - (\sin(3x))^2} = 3\sqrt{1 - y(x)^2}$ (for x close to 0).

Hence, $y(x) = \sin(3x)$ solves the differential equation $y' = 3\sqrt{1-y^2}$ (for x close to 0).

(c) We compute $y''(x) = -9\sin(3x)$.

Accordingly, $y(x) = \sin(3x)$ solves the DE $y'' = -9\sin(3x)$.

Comment. Once more this DE is easy (because it only involves y'' but not y or y'). Hence, we can find the general solution by simply taking two antiderivatives:

$$y(x) = \iint -9\sin(3x)dx \, dx = \int (3\cos(3x) + C)dx = \sin(3x) + Cx + D$$

Here it is important that we give the second constant of integration a name different from the first. That way, we see that the general solution has 2 degrees of freedom. This matches the fact that the order of the DE is 2.

Important comment. This is no coincidence. In general, we expect a DE of order r to have a general solution with r parameters.

(d) $y(x) = \sin(3x)$ also solves the DE y'' = -9y.

Comment. This is again a DE of order 2. Therefore the general solution should have 2 degrees of freedom. Later we will learn to solve such DEs. For now, we can verify that $y(x) = A \sin(3x) + B \cos(3x)$ is a solution for any constants A and B.

Homework. Check that $y(x) = \sin(3x) + C$ does not solve the DE y'' = -9y.

Example 6. Consider the DE $e^y y' = 1$.

- (a) Is $y(x) = \ln(x)$ a solution to the DE?
- (b) Is $y(x) = \ln(x) + C$ a solution to the DE?
- (c) Is $y(x) = \ln(x+C)$ a solution to the DE?

Solution.

- (a) Since $y'(x) = \frac{1}{x}$ and $e^{y(x)} = e^{\ln(x)} = x$, we have $e^y y' = x \cdot \frac{1}{x} \stackrel{\checkmark}{=} 1$. Hence, $y(x) = \ln(x)$ is a solution to the given DE.
- (b) Since $y'(x) = \frac{1}{x}$ and $e^{y(x)} = e^{\ln(x)+C} = xe^{C}$, we have $e^{y}y' = xe^{C} \cdot \frac{1}{x} = e^{C}$. Thus the DE is satisfied only if $e^{C} = 1$ which only happens if C = 0 (which is the case in the first part). Hence, $y(x) = \ln(x) + C$ is not a solution to the given DE except if C = 0.
- (c) Since $y'(x) = \frac{1}{x+C}$ and $e^{y(x)} = e^{\ln(x+C)} = x+C$, we have $e^y y' = (x+C) \cdot \frac{1}{x+C} \stackrel{\checkmark}{=} 1$. Hence, $y(x) = \ln(x+C)$ is indeed a one-parameter family of solutions to the given DE.

Example 7. Solve the DE $y' = x^2 + x$.

Solution. Note that the DE simply asks for a function y(x) with a specific derivative (in particular, the righthand side does not involve y(x)). In other words, the desired y(x) is an **antiderivative** of $x^2 + x$. We know from Calculus II that we can find antiderivatives by integrating:

$$y(x) = \int (x^2 + x) dx = \frac{1}{3}x^3 + \frac{1}{2}x^2 + C$$

Moreover, we know from Calculus II that there are no other solutions. In other words, we found the **general solution** to the DE.

To single out a **particular solution**, we need to specify additional conditions (typically one condition per parameter in the general solution). For instance, it is common to impose **initial conditions** such as y(1) = 2. A DE together with an initial condition is called an **initial value problem** (IVP).

Example 8. Solve the IVP $y' = x^2 + x$ with y(1) = 2.

Solution. From the previous example, we know that $y(x) = \frac{1}{2}x^3 + \frac{1}{2}x^2 + C$.

Since $y(1) = \frac{1}{3} + \frac{1}{2} + C = \frac{5}{6} + C \stackrel{!}{=} 2$, we find $C = 2 - \frac{5}{6} = \frac{7}{6}$. Hence, $y(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{7}{6}$ is the (unique) solution of the IVP.

Example 9. (homework) Solve the DE $y'' = x^2 + x$.

Solution. We now take two antiderivatives of $x^2 + x$ to get

$$y(x) = \iint (x^2 + x) dx dx = \int \left(\frac{1}{3}x^3 + \frac{1}{2}x^2 + C\right) dx = \frac{1}{12}x^4 + \frac{1}{6}x^3 + Cx + D,$$

where it is important that we give the second constant of integration a name different from the first. **Important comment.** Again, this is the general solution to the DE. The DE is of order 2 and, as expected, the general solution has 2 parameters.