Example 5. (cont'd) Determine several (random) DEs that $y(x)=\sin (3 x)$ solves.

Solution.

(a) We compute $y^{\prime}(x)=3 \cos (3 x)$.

Accordingly, $y(x)=\sin (3 x)$ solves the DE $y^{\prime}=3 \cos (3 x)$.
Comment. Note that there are further solutions to this DE: the general solution is $\int 3 \cos (3 x) \mathrm{d} x=$ $\sin (3 x)+C$ where C is any constant. We say that $y(x)=\sin (3 x)+C$ is a one-parameter family of solutions to the DE. C is called a degree of freedom.
(b) As last time, we note that $\cos (3 x)=3 \sqrt{1-(\sin (3 x))^{2}}=3 \sqrt{1-y(x)^{2}}$ (for x close to 0).

Hence, $y(x)=\sin (3 x)$ solves the differential equation $y^{\prime}=3 \sqrt{1-y^{2}}$ (for x close to 0).
(c) We compute $y^{\prime \prime}(x)=-9 \sin (3 x)$.

Accordingly, $y(x)=\sin (3 x)$ solves the DE $y^{\prime \prime}=-9 \sin (3 x)$.
Comment. Once more this DE is easy (because it only involves $y^{\prime \prime}$ but not y or y^{\prime}). Hence, we can find the general solution by simply taking two antiderivatives:

$$
y(x)=\iint-9 \sin (3 x) \mathrm{d} x \mathrm{~d} x=\int(3 \cos (3 x)+C) \mathrm{d} x=\sin (3 x)+C x+D
$$

Here it is important that we give the second constant of integration a name different from the first. That way, we see that the general solution has 2 degrees of freedom. This matches the fact that the order of the DE is 2 .
Important comment. This is no coincidence. In general, we expect a DE of order r to have a general solution with r parameters.
(d) $y(x)=\sin (3 x)$ also solves the DE $y^{\prime \prime}=-9 y$.

Comment. This is again a DE of order 2. Therefore the general solution should have 2 degrees of freedom. Later we will learn to solve such DEs. For now, we can verify that $y(x)=A \sin (3 x)+B \cos (3 x)$ is a solution for any constants A and B.
Homework. Check that $y(x)=\sin (3 x)+C$ does not solve the DE $y^{\prime \prime}=-9 y$.
Example 6. Consider the $\mathrm{DE} e^{y} y^{\prime}=1$.
(a) Is $y(x)=\ln (x)$ a solution to the DE?
(b) Is $y(x)=\ln (x)+C$ a solution to the DE?
(c) Is $y(x)=\ln (x+C)$ a solution to the DE ?

Solution.
(a) Since $y^{\prime}(x)=\frac{1}{x}$ and $e^{y(x)}=e^{\ln (x)}=x$, we have $e^{y} y^{\prime}=x \cdot \frac{1}{x} \stackrel{\checkmark}{=} 1$.

Hence, $y(x)=\ln (x)$ is a solution to the given DE.
(b) Since $y^{\prime}(x)=\frac{1}{x}$ and $e^{y(x)}=e^{\ln (x)+C}=x e^{C}$, we have $e^{y} y^{\prime}=x e^{C} \cdot \frac{1}{x}=e^{C}$. Thus the DE is satisfied only if $e^{C}=1$ which only happens if $C=0$ (which is the case in the first part).
Hence, $y(x)=\ln (x)+C$ is not a solution to the given DE except if $C=0$.
(c) Since $y^{\prime}(x)=\frac{1}{x+C}$ and $e^{y(x)}=e^{\ln (x+C)}=x+C$, we have $e^{y} y^{\prime}=(x+C) \cdot \frac{1}{x+C} \xlongequal{\natural} 1$.

Hence, $y(x)=\ln (x+C)$ is indeed a one-parameter family of solutions to the given DE.

Example 7. Solve the DE $y^{\prime}=x^{2}+x$.
Solution. Note that the DE simply asks for a function $y(x)$ with a specific derivative (in particular, the righthand side does not involve $y(x)$). In other words, the desired $y(x)$ is an antiderivative of $x^{2}+x$. We know from Calculus II that we can find antiderivatives by integrating:

$$
y(x)=\int\left(x^{2}+x\right) \mathrm{d} x=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C
$$

Moreover, we know from Calculus II that there are no other solutions. In other words, we found the general solution to the DE.

To single out a particular solution, we need to specify additional conditions (typically one condition per parameter in the general solution). For instance, it is common to impose initial conditions such as $y(1)=2$. A DE together with an initial condition is called an initial value problem (IVP).

Example 8. Solve the IVP $y^{\prime}=x^{2}+x$ with $y(1)=2$.
Solution. From the previous example, we know that $y(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C$.
Since $y(1)=\frac{1}{3}+\frac{1}{2}+C=\frac{5}{6}+C \stackrel{!}{=} 2$, we find $C=2-\frac{5}{6}=\frac{7}{6}$.
Hence, $y(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{7}{6}$ is the (unique) solution of the IVP.
Example 9. (homework) Solve the DE $y^{\prime \prime}=x^{2}+x$.
Solution. We now take two antiderivatives of $x^{2}+x$ to get

$$
y(x)=\iint\left(x^{2}+x\right) \mathrm{d} x \mathrm{~d} x=\int\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C\right) \mathrm{d} x=\frac{1}{12} x^{4}+\frac{1}{6} x^{3}+C x+D,
$$

where it is important that we give the second constant of integration a name different from the first. Important comment. Again, this is the general solution to the DE. The DE is of order 2 and, as expected, the general solution has 2 parameters.

