Review. A homogeneous linear DE with constant coefficients is of the form p(D)y = 0, where p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k, we get the k solutions $x^{j}e^{rx}$ for j = 0, 1, ..., k - 1.

Example 68. Determine the general solution of $y^{(6)} = 3y^{(5)} - 4y'''$.

Solution. This DE is of the form p(D) = 0 with $p(D) = D^6 - 3D^5 + 4D^3 = D^3(D-2)^2(D+1)$.

The characteristic roots are 2, 2, 0, 0, 0, -1.

By Theorem 64, the general solution is $y(x) = (C_1 + C_2 x)e^{2x} + C_3 + C_4 x + C_5 x^2 + C_6 e^{-x}$.

Example 69. Consider the function $y(x) = 3xe^{-2x} + 7$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y = 0, the characteristic roots must include -2, -2, 0. The simplest choice for p(D) thus is $p(D) = (D+2)^2D = D^3 + 4D^2 + 4D$. Accordingly, y(x) is a solution of y''' + 4y'' + 4y' = 0.

Example 70. (homework) Consider the function $y(x) = 3xe^{-2x} + 7e^x$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include -2, -2, 1. The simplest choice for p(D) thus is $p(D) = (D+2)^2(D-1) = D^3 + 3D^2 - 4$. Accordingly, y(x) is a solution of y''' + 3y'' - 4y = 0.

Real form of complex solutions

Let's recall some basic facts about complex numbers:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.

Important observation. The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.

• The conjugate of z = x + iy is $\overline{z} = x - iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \overline{z} . That's the reason why, in problems involving only real numbers, if a complex number z = x + iy shows up, then its **conjugate** $\overline{z} = x - iy$ has to show up in the same manner. With that in mind, have another look at the examples below.

- The real part of z = x + iy is x and we write Re(z) = x.
 Likewise the imaginary part is Im(z) = y.
 Observe that Re(z) = ¹/₂(z + z̄) as well as Im(z) = ¹/_{2i}(z z̄).
- Euler's identity (see Theorem 54) states that $e^{ix} = \cos(x) + i\sin(x)$. It follows that $\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

Example 71. Determine the general solution of y'' + y = 0.

Solution. The characteristic polynomial is $D^2 + 1$ which has no roots over the reals. Over the **complex numbers**, by definition, the roots are *i* and -i. So the general solution is $y(x) = C_1 e^{ix} + C_2 e^{-ix}$.

Solution. On the other hand, we easily check that $y_1 = \cos(x)$ and $y_2 = \sin(x)$ are two solutions. Hence, the general solution can also be written as $y(x) = D_1 \cos(x) + D_2 \sin(x)$.

Important comment. That we have these two different representations is a consequence of Euler's identity (see Theorem 54)

$$e^{ix} = \cos(x) + i\sin(x).$$

Likewise, $e^{-ix} = \cos(x) - i\sin(x)$. (This follows from replacing x by -x in Euler's identity.) On the other hand, $\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

[Recall that the first formula is an instance of $\operatorname{Re}(z) = \frac{1}{2}(z+\bar{z})$ and the second of $\operatorname{Im}(z) = \frac{1}{2i}(z-\bar{z})$.]

Example 72. Determine the general solution of y'' - 4y' + 13y = 0 using only real numbers. Solution. The characteristic polynomial $p(D) = D^2 - 4D + 13$ has roots 2 + 3i, 2 - 3i.

[We can use the quadratic formula to find these roots as $\frac{4 \pm \sqrt{4^2 - 4 \cdot 13}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$.] Hence, the general solution in real form is $y(x) = C_1 e^{2x} \cos(3x) + C_2 e^{2x} \sin(3x)$. Note. $e^{(2+3i)x} = e^{2x} e^{3ix} = e^{2x} (\cos(3x) + i\sin(3x))$