
Notes for Lecture 9 Tue, 9/13/2022

The logistic model of population growth

If the population is constrained by resources, then dP

dt
=kP is not a good model. A model to take

that into account is dP

dt
= kP

�
1¡ P

M

�
. This is the logistic equation.

M is called the carrying capacity:
� Note that if P �M then 1¡ P

M
�1 and we are back to the simpler exponential model. This means that

the population P will grow (nearly) exponentially if P is much less than the carrying capacity M .

� On the other hand, if P >M then 1¡ P

M
< 0 so that (assuming k > 0) dP

dt
< 0, which means that the

population P is shrinking if it exceeds the carrying capacity M .

Comment. If P (t) is the size of a population, then P 0/P can be interpreted as its per capita growth rate.
Note that in the exponential model we have that P 0/P = k is constant.
On the other hand, in the logistic model we have that P 0/P = k(1¡P /M) is a linear function.

Example 43. Solve the logistic equation dP

dt
= kP

�
1¡ P

M

�
.

Solution. This is a separable DE: 1

P
¡
1¡ P

M

� dP = kdt.

To integrate the left-hand side, we use partial fractions: 1

P
¡
1¡ P

M

�= 1

P
+

1/M

1¡ P

M

=
1

P
¡ 1

P ¡M .

After integrating, we obtain lnjP j ¡ lnjP ¡M j= kt+A.

Equivalently, ln
������ P

P ¡M

������= kt+A so that P

P ¡M =�ekt+A=Bekt where B=�eA.

Solving for P , we conclude that the general solution is

P (t)=
BMekt

Bekt¡ 1
=

M

1+Ce¡kt
;

where replaced the free parameter B with C=¡1/B.

Initial population. Note that the initial population is P (0)= M

1+C
. Equivalently, C= M

P (0)
¡ 1 which expresses

the free parameter C in terms of the initial population.
Comment. Note that B=�eA can be any real number except 0. However, we can easily check that B=0 also
gives us a solution to the DE (namely, the trivial solution P =0). This solution was �lost� when we divided by
P to separate variables.
Exercise. Note that the logistic equation is a Bernoulli equation. As an alternative to separation of variables,
we can therefore solve it by transforming it to a linear DE.

Review of partial fractions. Recall that partial fractions tells us that fractions like p(x)

(x¡ r1)(x¡ r2)���
(with the

numerator of smaller degree than the denominator; and with the rj distinct) can be written as a sum of terms
of the form Aj

x¡ rj
for suitable constants Aj.

In our case, this tells us that 1

P (1¡P /M)
=
A

P
+

B

1¡P /M
for certain constants A and B.

Multiply both sides by P and set P =0 to find A=1.
Multiply both sides by 1¡P /M and set P =M to find B=1/M . This is what we used above.

The logistic equation with growth rate k and carrying capacity M is

dP
dt

= kP

�
1¡ P

M

�
:

The general solution is P (t)= M

1+Ce¡kt
where C = M

P (0)
¡ 1.
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Example 44. Let P (t) describe the size of a population at time t. Under the logistic model of
population growth, what is lim

t!1
P (t)?

Solution.

� If k > 0, then e¡kt! 0 and it follows from P (t)=
M

1+Ce¡kt
that lim

t!1
P (t)=M .

In other words, the population will approach the carrying capacity in the long run.

� If k=0, then we simply have P (t)= M

1+C
. In other words, the population remains constant.

This is a corner case because the DE becomes dP
dt
=0.

� If k < 0, then e¡kt!1 and it follows that lim
t!1

P (t)= 0.

In other words, the population will approach extinction in the long run.

Example 45. (homework) A rising population is modeled by the equation dP

dt
= 400P ¡ 2P 2.

(a) When the population size stabilizes in the long term, how big will the population be?

(b) Under which condition will the population size shrink?

(c) What is the population size when it is growing the fastest?

(d) If P (0)= 10, what is P (t)?

Solution.

(a) Once the population reaches a stable level in the long term, we have dP
dt
=0 (no change in population size).

Hence, 0 = 400P ¡ 2P 2= 2P (200¡ P ) which implies that P = 0 or P = 200. Since the population is
rising, it will approach 200 in the long term.

Alternatively. Our DE matches the logistic equation dP

dt
= kP

�
1¡ P

M

�
with k= 400 and M = 200.

(b) The population size will shrink if dP
dt
< 0.

The DE tells us that is the case if and only if 400P ¡ 2P 2< 0 or, equivalently, if P >
400
2
= 200.

Comment. In the logistic model, the population shrinks if it exceeds the carrying capacity.

(c) This is asking when dP

dt
(the population growth) is maximal.

The DE is telling us that this growth is f(P )=400P ¡ 2P 2. This a parabola that opens to the bottom.
From Calculus, we know that it has a global maximum when f 0(P ) = 0.
f 0(P )= 400¡ 4P =0 leads to P = 100.
Thus, the population is growing the fastest when its size is 100.
Comment. In the logistic model, the population is growing fastest when it is half the carrying capacity.

(d) We know that the general solution of the logistic equation is P (t)= M

1+Ce¡kt
=

200
1+Ce¡400t

.
Using P (0)= 10, we find that C =

200
10 ¡ 1= 19.

Thus P (t)= 200
1+ 19e¡400t

.

Example 46. A scientist is claiming that a certain population P (t) follows the logistic model of
population growth perfectly. How many data points do you need to begin to verify that claim?

Solution. The general solution P (t)= M

1+Ce¡kt
to the logistic equation has 3 parameters.

Hence, we need 3 data points just to solve for their values.
Once we have 4 or more data points, we are able to test whether P (t) conforms to the logistic model.
Important comment. Complicated models tend to have many degrees of freedom, which makes it easier to fit
them to real world data (even if the model is not actually particularly appropriate). We therefore need to be
cognizant about how much evidence is needed to decide that a given model is appropriate for the data.
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Further population models

Let P (t) be the size of the population that we wish to model at time t.

Denote with �(t) and �(t) the birth and death rate at time t, measured in number of births or
deaths per unit of population per unit of time.

In the time interval [t; t+�t], we have that

�P � �(t)P (t)�t¡ �(t)P (t)�t:

Comment. The reason that this is not an exact equation is that the rates �(t) and �(t) are allowed to change with
t. In the above, we used these rates at time t for all times in [t; t+�t]. This is a good approximation if�t is small.

Divide both sides by �t and let �t! 0 to obtain the general differential equation

dP
dt

=(�(t)¡ �(t))P:

Given certain scenarios, we now make corresponding reasonable choices for �(t) and �(t).

� (basic) If the rates �(t) and �(t) are constant over time, the DE is dP
dt
=(� ¡ �)P .

This is the exponential model of population growth.

� (limited supply) If supply is limited, the birth rate will decrease as P increases. The simplest such
relationship would be a linear dependence, which would take the form �(t) = �0¡ �1P .
On the other hand, we still assume that �(t) is constant. (However, depending on circumstances, it could
also be reasonable to assume that �(t) increases as P increases.)

With these assumptions, the corresponding DE is dP
dt
= (�0¡ �1P ¡ �)P .

This is the logistic equation dP

dt
= kP (1¡P /M) with k= �0¡ � and k

M
= �1.

� (rare isolated species) If the population consists of rare and isolated specimen which rely on chance
encounters to reproduce, then it is reasonable to assume that the birth rate �(t) is proportional to P (t)
(larger P (t) means more possibilities for chance encounters). Once more, we assume that �(t) constant.

With these assumptions, the corresponding DE is dP
dt
= (kP ¡ �)P .

This is, again, the logistic equation.

� (rare isolated species with very long life) As before, for a rare isolated population, it is reasonable to
assume that �(t) is proportional to P (t). If, in addition, our specimen have very long life, then we would
assume that �(t)= 0.

The corresponding DE is dP
dt
= kP 2. Solutions are P (t)= 1

C ¡ kt
where P (0)= 1/C. (Do it!)

Comment. Note that P (t)!1 as t!C /k. This explosion (which implies population growth beyond
exponential growth) emphasizes that we can only use the DE while our initial assumptions are satisfied.
Here, the DE is no longer appropriate when our species is no longer rare because P (t) is too large.

� (spread of contagious incurable virus) Let P (t) count the number of infected population units among a
(constant) total of N . Since the virus is incurable, we have �(t)=0. On the other hand, it is reasonable
to assume that �(t) is proportional to N ¡P (the number of people that can still be infected).

The resulting DE is dP
dt
= kP (N ¡P ). Once again, this is the logistic equation.

� (harvesting) Suppose that h population units are harvested each unit of time.

Then the DE becomes dP
dt
=(�(t)¡ �(t))P ¡h.

For instance. dP
dt
=kP ¡h has the solution P (t)=Cekt+h/k. In that case, we get exponential growth

if C>0. Note that P (0)=C+h/k. In terms of the initial population P (0), we therefore get exponential
growth if P (0)>h/k.
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