Example 21. Consider, again, the IVP xy' = 2y, y(a) = b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y' = f(x, y) with f(x, y) = 2y/x.

We compute that $\frac{\partial}{\partial y} f(x, y) = 2/x$.

We observe that both f(x,y) and $\frac{\partial}{\partial y}f(x,y)$ are continuous for all (x,y) with $x\neq 0.$

Hence, if $a \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

What happens in the case a = 0?

Solution. In Example 15, we found that the DE xy' = 2y is solved by $y(x) = Cx^2$.

This means that the IVP with y(0) = 0 has infinitely many solutions.

On the other hand, the IVP with y(0) = b where $b \neq 0$ has no solutions. (This follows from the fact that there are no solutions to the DE besides $y(x) = Cx^2$. Can you see this by looking at the slope field?)

Example 22. Consider the IVP $y' = ky^2$, y(a) = b. Discuss existence and uniqueness of solutions. **Solution.** The IVP is y' = f(x, y) with $f(x, y) = ky^2$. We compute that $\frac{\partial}{\partial y}f(x, y) = 2ky$. We observe that both f(x, y) and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 23. Solve $y' = ky^2$.

Solution. Separate variables to get $\frac{1}{y^2} \frac{dy}{dx} = k$. Integrating $\int \frac{1}{y^2} dy = \int k dx$, we find $-\frac{1}{y} = kx + C$. We solve for y to get $y = -\frac{1}{C+kx} = \frac{1}{D-kx}$ (with D = -C). That is the solution we verified earlier!

Comment. Note that we did not find the solution y = 0 (it was "lost" when we divided by y^2). It is called a singular solution because it is not part of the general solution (the one-parameter family found above). However, note that we can obtain it from the general solution by letting $D \to \infty$.

Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division by y^2 made us lose a solution, other transformations can add extra solutions which do not solve the original DE. Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point. The DE $(y-1)y' = (y-1)ky^2$ has the same solutions as $y' = ky^2$ plus the additional solution y = 1 (which does not solve $y' = ky^2$).

Example 24. (extra) Solve the IVP $y' = y^2$, y(0) = 1.

Solution. From the previous example with k = 1, we know that $y(x) = \frac{1}{D-x}$.

Using y(0) = 1, we find that D = 1 so that the unique solution to the IVP is $y(x) = \frac{1}{1 - x}$.

Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.

On the other hand, note that $y(x) = \frac{1}{1-x}$ is only valid on $(-\infty, 1)$ and that it cannot be continuously extended past x = 1; it is only a local solution.

Example 25. (homework) Consider the IVP $(x - y^2)y' = 3x$, y(4) = b. For which choices of b does the existence and uniqueness theorem guarantee a unique (local) solution?

Solution. The IVP is y' = f(x, y) with $f(x, y) = 3x/(x - y^2)$. We compute that $\frac{\partial}{\partial y}f(x, y) = 6xy/(x - y^2)^2$. We observe that both f(x, y) and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y) with $x - y^2 \neq 0$. Note that $4 - b^2 \neq 0$ is equivalent to $b \neq \pm 2$.

Hence, if $b \neq \pm 2$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Linear first-order DEs

A **linear differential equation** is one where the function y and its derivatives only show up linearly (i.e. there is nothing like y^2 , 1/y or sin(y)).

As such, the most general linear first-order DE is of the form

$$A(x)y' + B(x)y + C(x) = 0.$$

Comment. Note that any such DE can be rewritten in the form y' + P(x)y = Q(x) by dividing by A(x) and rearranging.

Example 26. (extra) Solve $\frac{dy}{dx} = 2xy^2$.

Solution. (separation of variables) $\frac{1}{y^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 2x$, $-\frac{1}{y} = x^2 + C$.

Hence the general solution is $y = \frac{1}{D - x^2}$. [There also is the singular solution y = 0.]

Solution. (in other words) Note that $\frac{1}{y^2} \frac{dy}{dx} = 2x$ can be written as $\frac{d}{dx} \left[-\frac{1}{y} \right] = \frac{d}{dx} [x^2]$. From there it follows that $-\frac{1}{y} = x^2 + C$, as above.

We now use the idea of writing both sides as a derivative to also solve linear DEs that are not separable.

The multiplication by $\frac{1}{u^2}$ will be replaced by multiplication with a so-called integrating factor.

Example 27. Solve y' = x - y.

Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as y' + y = x.

Next, multiply both sides with e^x (we will see in a little bit how to find this "integrating factor") to get

$$\underbrace{\frac{e^x y' + e^x y}{e^x y'} = x e^x}_{= \frac{\mathrm{d}}{\mathrm{d}x} [e^x y]}$$

The "magic" part is that we are able to realize the new left-hand side as a derivative! Next, we will integrate both sides and then solve for y. (Try it yourself!) To be continued...