
Notes for Lecture 5 Tue, 8/30/2022

Review. Existence and uniqueness theorem (Theorem 19) for an IVP y 0= f(x; y), y(a)= b:
If f(x; y) and @

@y
f(x; y) are continuous around (a; b) then, locally, the IVP has a unique solution.

Example 21. Consider, again, the IVP xy 0 = 2y, y(a) = b.
Discuss existence and uniqueness of solutions.
Solution. The IVP is y 0= f(x; y) with f(x; y)= 2y/x.

We compute that @

@y
f(x; y)= 2/x.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y)

with x=/ 0.
Hence, if a=/ 0, then the IVP locally has a unique solution by the existence
and uniqueness theorem.
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What happens in the case a=0?
Solution. In Example 15, we found that the DE xy 0=2y is solved by y(x)=Cx2.
This means that the IVP with y(0)=0 has infinitely many solutions.
On the other hand, the IVP with y(0)= b where b=/ 0 has no solutions. (This follows from the fact that there
are no solutions to the DE besides y(x)=Cx2. Can you see this by looking at the slope field?)

Example 22. Consider the IVP y 0=ky2, y(a)= b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y 0= f(x; y) with f(x; y)= ky2. We compute that @

@y
f(x; y)= 2ky.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 23. Solve y 0= ky2.
Solution. Separate variables to get 1

y2
dy

dx
= k.

Integrating
R 1

y2
dy=

R
kdx, we find −1

y
= kx+C.

We solve for y to get y=− 1

C + kx
=

1

D− kx (with D=−C). That is the solution we verified earlier!

Comment. Note that we did not find the solution y = 0 (it was �lost� when we divided by y2). It is called a
singular solution because it is not part of the general solution (the one-parameter family found above). However,
note that we can obtain it from the general solution by letting D!1.
Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division
by y2 made us lose a solution, other transformations can add extra solutions which do not solve the original DE.
Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point.
The DE (y − 1)y0= (y − 1)ky2 has the same solutions as y 0= ky2 plus the additional solution y= 1 (which
does not solve y 0= ky2).

Example 24. (extra) Solve the IVP y 0= y2, y(0)= 1.

Solution. From the previous example with k=1, we know that y(x)= 1

D−x .

Using y(0)=1, we find that D=1 so that the unique solution to the IVP is y(x) = 1

1−x .

Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.
On the other hand, note that y(x)= 1

1−x is only valid on (−1;1) and that it cannot be continuously extended
past x=1; it is only a local solution.
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Example 25. (homework) Consider the IVP (x− y2)y 0=3x, y(4)= b. For which choices of b
does the existence and uniqueness theorem guarantee a unique (local) solution?

Solution. The IVP is y 0= f(x; y) with f(x; y)=3x/(x− y2). We compute that @

@y
f(x; y)=6xy/(x− y2)2.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y) with x− y2=/ 0.

Note that 4− b2=/ 0 is equivalent to b=/ �2.
Hence, if b=/ �2, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Linear first-order DEs

A linear differential equation is one where the function y and its derivatives only show up linearly
(i.e. there is nothing like y2, 1/y or sin(y)).
As such, the most general linear first-order DE is of the form

A(x)y 0+B(x)y+C(x)= 0:

Comment. Note that any such DE can be rewritten in the form y 0+ P (x)y = Q(x) by dividing by A(x) and
rearranging.

Example 26. (extra) Solve dy

dx
=2xy2.

Solution. (separation of variables) 1

y2
dy

dx
=2x, −1

y
=x2+C.

Hence the general solution is y= 1

D−x2 . [There also is the singular solution y=0.]

Solution. (in other words) Note that 1

y2
dy

dx
=2x can be written as d

dx

h
−1

y

i
=

d

dx
[x2].

From there it follows that −1

y
= x2+C, as above.

We now use the idea of writing both sides as a derivative to also solve linear DEs that are not
separable.

The multiplication by 1

y2
will be replaced by multiplication with a so-called integrating factor.

Example 27. Solve y 0= x− y.

Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as y 0+ y= x.
Next, multiply both sides with ex (we will see in a little bit how to find this �integrating factor�) to get

exy 0+ exy

=
d

dx
[exy]

=xex:

The �magic� part is that we are able to realize the new left-hand side as a derivative!
Next, we will integrate both sides and then solve for y. (Try it yourself!) To be continued.. .
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