Notes for Lecture 9 Mon, 2/2/2026

We have seen two simple examples of PRGs so far:

e linear congruential generators z,,+1 =az, + b (mod m)
e LFSRs z, ¢r=c1Zpip—1+ Copnipr—2+ ...+ coxy, (mod?2)

Of course, we could also combine LFSRs and linear congruential generators (i.e. look at recurrences
like for LFSRs but modulo any parameter m).

However, much of the appeal of an LFSR comes from its extremely simple hardware realization, as the sketch
in Example 55 indicates.

Example 58. (extra) One can also consider nonlinear recurrences (it mitigates some issues). Our
book mentions x,, 3= %, 2%y, + Ty 4+1 (mod 2). Generate some numbers.
seed
Solution. For instance, using the seed 0, 0, 1, we generate W, 0,1,1,1,0,1, ... which now repeats (with
period 4) because the state 1,0, 1 appeared before. Observe that the generated sequences is only what is called
eventually periodic (it is not strictly periodic because 0,0, 1 never shows up again).

Example 59. Suppose we have two PRGs that output bits. The first repeats after 14 bits, the
second after 18 bits. After how many bits do they repeat simultaneously?

What if the two PRGs repeat after 13 and 17 bits instead?

Solution. Note that the first PRG again repeats after 28 bits, after 42 bits and, in general after 14m bits where

m is any positive integer. Likewise, the second PRG repeats after 18m bits where m is any positive integer.

Therefore, both PRGs repeat simultaneously after lcm (14, 18) = 14;8 =126 bits.

Review. Here, Icm is the least common multiple. We can always compute the lcm through the Euclidean

algorithm by using lem (a,b) = ﬁ.abb)'

If the two PRGs repeat after 13 and 17 bits instead, then they repeat simultaneously after lem (13,17)=13-17=
221 bits.

Comment. Certain cicadas spend more than 99% of their life underground as nymphs and only emerge as adults
for 4-6 weeks. Interestingly, this life cycle is highly synchronized: cicadas of one species in a region appear all
at once. In 2024, “Brood XIII" and “Brood XIX" co-emerged. These emerge every 17 and 13 years, respectively.
Therefore this co-emergence is a rare event that only happens every 221 years (though, the same thing happened
2015 with two different broods).

https://en.wikipedia.org/wiki/Periodical_cicadas

Example 60. (bonus!) Eventually the output of the baby CSS in Example 61 has to repeat
(though it need not be perfectly periodic; see Example 58). Once it repeats, what is the period?
Note. The state of the system is determined by 3 + 4 4 1 =8 bits (3 bits for LFSR-1, 4 bits for LFSR-2, and 1
bit for the carry). Hence, there are 28 =256 many states. Since the state with everything 0 is again special, that

means that after at most 255 steps our PRG will reach a state it has been in before. At that point, everything
will repeat.

(To collect a bonus point, send me an email within the next week with the period and how you found it.)

Armin Straub 19
straub@southalabama.edu

https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas

| Combining two LFSRs to get the CSS (content scramble system) |

A popular way to reduce predictability is to combine several LFSRs (in a nonlinear fashion):

Example 61. The CSS (content scramble system) is based on 2 LFSRs and used for the encryption
of DVDs. Before discussing the actual CSS let us consider a baby version of CSS. Our PRG uses
the LFSR x,, 43 = 2,41 + x,, (mod 2) as well as the LFSR ;44 = 2,12 + x,, (mod 2). The
output of the PRG is the output of these two LFSRs added with carry.

Adding with carry just means that we are adding bits modulo 2 but add an extra 1 to the next bits if the sum
exceeded 1. This is the same as interpreting the output of each LFSR as the binary representation of a (huge)
number, then adding these two numbers, and outputting the binary representation of the sum.

If we use (0,0, 1) as the seed for LFSR-1, and (0, 1,0, 1) for LFSR-2, what are the first 10 bits
output by our PRG?

Solution. With seed 0,0,1 LSFR-1 produces 0,1,1,1,0,0,1,0,1,1, ...
With seed 0, 1,0, 1 LSFR-2 produces 0,0,0,1,0,1,0,0,0, 1, ...

We now add these two:

of1(1{1j0(0|1]0]1]|1
+ 0(0|0|1j0f1|0]O0O 1
carry 1 1
0f{1{1(0(1{1]1]0]1|0

Hence, the output of our PRGis 0,1,1,0,1,1,1,0,1,0,

Important comment. Make sure you realize in which way this CSS PRG is much less predictable than a single
LFSR! A single LFSR with ¢ registers is completely predictable since knowing ¢ bits of output (determines the
state of the LFSR and) allows us to predict all future output. On the other hand, it is not so simple to deduce
the state of the CSS PRG from the output. For instance, the initial (0, 1, ...) output could have been generated
as (0,0,...)+(0,1,...) or (0,1,...) 4+ (0,0, ...) or (1,0,...)+ (1,0, ...) or (1,1,...) +(1,1,...).

[In this case, we actually don’t learn anything about the registers of each individual LFSR. However, we do learn
how their values have to match up. That's the correlation that is exploited in correlation attacks, like the one
described next class for the actual CSS scheme.]

Advanced comment. Is the carry important? Yes! Let a1, as, ... and by, bs, ... be the outputs of LFSR-1 and
LFSR-2. Suppose we sum without carry. Then the output is aj + b1, as + ba, ... (with addition mod 2). If Eve
assigns variables k1, ko, ..., k7 to the 3 + 4 seed bits (the key in the stream cipher), then the output of the
combined LFSR will be linear in these seven variables (because the a; and b; are linear combinations of the k;).
Given just a few more than 7 output bits, a little bit of linear algebra (mod 2) is therefore enough to solve for
k1, ko, ..., k.

On the other hand, suppose we include the carry. Then the output is a1 + b1, a2+ b2+ a1b1, ... (note how a1by
is 1 (mod2) precisely if both a1 and by are 1 (mod 2), which is when we have a carry). This is not linear in the
a; and b; (and, hence, not linear in the k;), and we cannot use linear algebra to solve for k1, k2, ..., k7 as before.

Example 62. In each case, determine if the stream could have been produced by the LFSR

Tpt5=Tpto+ Ty (mod2). If yes, predict the next three terms.

(STREAM-1) ..., 1,0,0,1,1,1,1,0,1, ... (STREAM-2) ...,1,1,0,0,0,1,1,0,1, ...
Solution. Using the LFSR, the values 1,0,0, 1,1 are followed by 1,1,1,0, ... Hence, STREAM-1 was not produced

by this LFSR.

On the other hand, using the LFSR, the values 1,1,0,0,0 are followed by 1,1,0,1,1,1,0, ... Hence, it is possible
that STREAM-2 was produced by the LFSR (for a random stream, the chance is only 1 /2% =6.25% that 4 bits
matched up). We predict that the next values are 1,1,0, ...

Comment. This observation is crucial for the attack on CSS described in Example 63.

Armin Straub 20
straub@southalabama.edu

