
Notes for Lecture 7 Wed, 1/28/2026

Historical example: substitution cipher

Example 42. (substitution cipher) In a substitution cipher, the key k is some permutation of
the letters A;B; :::; Z. For instance, k=FRA:::. Then we encrypt A!F , B!R, C!A and
so on. How large is the key space?
Solution. Key space has size 26!�1026.6� 288.4, so a key can be stored using 89 bits. That's actually a fairly
large key space (for instance, DES has a key size of 56 bits only). Too large to go through by brute force.
However, still easy to break. Since each letter is always replaced with the same letter, this cipher is susceptible
to a frequency attack, exploiting that certain letters (and, more generally, letter combinations!) occur much
more frequently in, say, English text than others. For instance, Lewand's book on Cryptology lists the following
frequencies:
E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%, I: 7%, N: 6.7%, S: 6.3%, H: 6.1%, R: 6%, D: 4.3%, L: 4%, C: 2.8%, :::
The rarest letters are Q and Z with a frequency of about 0.1% only. (The exact frequencies and precise ordering
various between different sources and the body of text that the frequencies were obtained from.)
The most common letter pairs (digrams) are TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI
HI AS TO.
More information at: https://en.wikipedia.org/wiki/Letter_frequency
Comment. Note that the frequencies and even the ranking depend considerably on the source of text. For
instance, using government telegrams, a military resource lists EN followed by RE, ER as the most frequent
digrams. That same manual suggests SENORITA as a mnemonic to remember the most frequent letters.
http://www.umich.edu/~umich/fm-34-40-2/ (Field Manual 34-40-2, Department of the Army, 1990)

Example 43. It seems convenient to add the space as a 27th letter in the historic encryption
schemes. Can you think of a reason against doing that?
Solution. In most texts, the space occurs more frequently and more regularly than any other letter. Adding it
to the encryption schemes would make them even more susceptible to attacks.

Example 44. (bonus challenge!) You intercept the following message from Alice:

WHCUHFWXOWHUQXOMOMQVSQWAMWHCUHFXOLNWXQMQVSQWAWMQLN

Your experience tells you that Alice is using a substitution cipher. You also know that this message
contains the word �secret�. Can you crack it?
Note. In modern practice, it is not uncommon to know (or suspect) what a certain part of the message should
be. For instance, PDF files start with �%PDF� (0x25504446).
See https://en.wikipedia.org/wiki/Magic_number_(programming) for more such instances.

(To collect a bonus point, send me an email within the next week with the plaintext and how you found it.)

One-time pad (continued)

Example 45. A ciphertext only attack on the one-time pad is entirely hopeless. Explain why!
Solution. The attacker only knows c =m � k. The attacker is unable to get any information on m, because
every other message m0 (of the right length) could have resulted in the same ciphertext c.
Indeed, the key k0=m0� c encrypts m0 to c as well (because m0� k0=m0� (m0� c) = c). Moreover, every
plaintext m0 is equally likely because it corresponds to a unique key.

The next example highlights the importance of only using the key once.

Armin Straub
straub@southalabama.edu

12

https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29

Example 46. (attack on the two-time pad) Alice made a mistake and encrypted the two
plaintexts m1, m2 using the same key k. How can Eve exploit that?
Solution. Eve knows the two ciphertexts c1=m1� k and c2=m2� k.
Hence, she can compute c1� c2=(m1� k)� (m2� k)=m1�m2.
This means that Eve knows m1 � m2, which is information about the original plaintexts (no key involved!).
That's a cryptographic disaster: Eve should never be able to learn anything about the plaintexts.
In fact. If the plaintexts are, say, English text encoded using ASCII then Eve very possibly can (almost)
reconstruct both m1 and m2 from m1�m2. The reason for that is that the messages are expressed in ASCII,
which means 8 bits per character of text. However, the entropy (a measure for the amount of information in a
message) of (longer) typical English text is frequently below 2 bits per character.
Some details and beautiful graphical illustrations are given at:
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

We saw in Example 45 that ciphertext only attacks on the one-time pad are entirely hopeless.
What about other attacks?

Attacks like known plaintext or chosen plaintext don't apply if the key is only to be used once.

Yet, the one-time pad by itself provides little protection of integrity. The next example shows
how tampering is possible without knowledge about the key.

Example 47. Alice sends an email to Bob using a one-time pad. Eve knows that and concludes
that, per email standard, the plaintext must begin with To: Bob. Eve wants to tamper with the
message and change it to To: Boo, for a light scare.

� Eve wants to change the 7th letter of the plain text m from b to o.

� Since b is 0x62 and o is 0x6F , we have b� o=0x0D. Hence, b� 0x0D= o.

� Therefore, if e=0x000000000000||| |{z}}} }
6 characters

0D00:::, then �TO: Bob:::�|| |{z}} }
m

� e= �TO: Boo:::�|| |{z}} }
m0

.

� Alice sends c=m� k. If Eve changes the ciphertext c to c0= c� e, then Bob receives c0 and decrypts

it to c0� k=m� k||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
=c

� e
zzz z}|{{{ {c 0

� k=m� e=m0, which is what Eve intended.

Using the one-time pad presents several challenges, including:

� keys must not be reused (see Example 46)

� while perfectly protecting against eavesdropping (if done correctly), the one-time pad is
not secure against tampering (see Example 47)

� key distribution and management
Alice and Bob have to somehow exchange huge amounts of keys, so that, at a later time, they are able
to communicate securely.

� for perfect confidentiality, the key must be perfectly random
But how can we produce huge amounts of random bits?
Especially, how to teach a deterministic machine like a computer to do that? Think about it! This is
much more challenging that it may seem at first:::

Armin Straub
straub@southalabama.edu

13

http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

These issues make one-time pads difficult to use in practice.

Historic comment. During the Cold War, the �hot line� between Washington and Moscow apparently used one-
time pads for secure communication.

Example 48. One thing that makes the one-time pad difficult to use is that the key needs to be
the same length as the plaintext. What if we have a shorter key and just repeat it until it has the
length we need?

That's essentially the Vigenere cipher (in a different alphabet).

Solution. Assuming the attacker knows the length of our key (if she doesn't she can just try all possibilities),
this is equivalent to using the one-time pad several times with the same key. That should never be done! Even
using a key twice means that we become susceptible to a ciphertext only attack (see Example 46).

So, repeating the key is a terrible idea. However, the idea to create a longer (random) key out of
a shorter (random) key is good (we will discuss pseudorandom generators next).

Let us emphasize that, in order to be perfectly confidential, the key for a one-time pad must be
chosen completely at random (otherwise, an attacker can make assumptions on the used keys).

Indeed, the need to generate random numbers shows in every modern cipher.

Stream ciphers

Once we have a way to generate pseudorandom numbers, we can use the idea of the one-time
pad to create a stream cipher.
Start with key of moderate size (say, 128 bits).
Use the key k and a PRG (pseudorandom generator) to generate a much longer pseudorandom keystream
PRG(k). Then encrypt Ek(m)=m�PRG(k).
We lost perfect confidentiality. Security relies on choice of PRG (must be unpredictable).

As with the one-time pad, we must never reuse the same keystream! That does not mean that
we cannot reuse the key: we can do that using a nonce: Ek(m)=m�PRG((nonce; k)), where
the seed is produced by combining the nonce and k (for instance, just concatenating them).

The nonce is then passed (unencrypted) along with the message.
To make sure that we never reuse the same keystream, we must never use the same nonce with the same key.
Remark. A nonce can only be used once, as is in its name. Apparently, according to Urban Dictionary, it is also
common as a British insult, roughly equivalent to wanker.

Armin Straub
straub@southalabama.edu

14

How to generate random numbers?

Natural randomness is surprisingly difficult to harness.
You can for instance play around with a Geiger counter but our department is short on these and getting lots of
random numbers is again challenging.

Linear congruential generators

(linear congruential generator) Let a; b;m be chosen parameters.

From the seed x0, we produce the sequence xn+1� axn+ b (modm).

The choice of a; b;m is crucial for this to generate acceptable pseudorandom numbers.
For instance, glibc uses a = 1103515245, b = 12345, m = 231. (This is one of two implementations.) In that
case, each xi is represented by precisely 31 bits. [Note that the choice of m makes this very fast.]
https://en.wikipedia.org/wiki/Linear_congruential_generator

Linear congruential generators (LCG) are easy to predict and must not be used for cryptographic purposes. More
generally, all polynomial generators are cryptographically insecure. They are still used in practice, because they
are fast and easy to implement and have decent statistical properties. (For instance, our online homework is
generated using random numbers, and there is no need for crypto-level security there.)
Statistical trouble. Can you see why the sequences produced by the glibc LCG alternate between even and odd
numbers? (Similarly, other low bits are much less �random� than the higher bits.) Because of this defect, some
programs (and other implementations of rand() based on LCGs) throw away the low bits entirely.
Comment. The particular choices of a and b in glibc are somewhat mysterious. See, for instance:
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand

Example 49. Generate values using the linear congruential generator xn+1� 5xn+3 (mod 8),
starting with the seed x0=6.
Solution. x1� 1, x2� 0, x3� 3, x4� 2, x5� 5, x6� 4, x7� 7, x8� 6. This is the value x0 again, so the
sequence will now repeat. Note that we went through all 8 residues before repeating. Period 8.
Note. Because 8=23 we can represent each xi using exactly 3 bits. Then x1; x2; x3; :::=1;0;3; ::: corresponds
to the bit stream (001 000 011 :::)2.

Example 50. (extra) Observe that the sequence produced by the linear congruential generator
xn+1� axn+ b (modm) must repeat, at the latest, after m terms. (Why?!)

One can give precise conditions on a; b; m to achieve a full period m. Namely, this happens if
and only if gcd (b;m)=1 and a¡ 1 is divisible by all primes (as well as 4) dividing m.

(a) Generate values using a linear congruential generator xn+1� 2xn+1 (mod10), starting with the seed
x0=5. When do they repeat? Is that consistent with the mentioned condition?

(b) What are possible values for a so that the LCG xn+1� axn+ 11 (mod100) has period 100?

(c) glibc uses a= 1103515245, b= 12345, m=231. After how many terms will the sequence repeat?

Solution.

(a) x1� 1, x2� 3, x3� 7, x4� 5. This is the value x0 again, so the sequence will repeat. Period 4.
[The period is less than 10. This is as predicted by the mentioned condition, because a¡1 is not divisible
by 2 and 5.]

(b) We need that a ¡ 1 is divisible by 4 and 5. Equivalently, a � 1 (mod 20). Hence, possible values are
a=1; 21; 41; 61; 81.

(c) Clearly, gcd (b; m) = 1. Also, a¡ 1 is divisible by 4 (and no primes other than 2 divide m). Hence, for
every seed, values repeat only after going through all 231 residues.

Armin Straub
straub@southalabama.edu

15

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand

Example 51. Let's use the PRG xn+1 � 5xn + 3 (mod 8) as a stream cipher with the key
k=4= (100)2. The key is used as the seed x0 and the keystream is PRG(k) = x1 x2 ::: (where
each xi is 3 bits). Encrypt the message m=(101 111 001)2.
Solution. We first use the PRG with seed x0 = k to produce the keystream PRG(k) = 7; 6; 1; ::: =
(111 110 001 :::)2.
We then encrypt and get c=Ek(m)=m�PRG(k)= (101 111 001)2� (111 110 001)2=(010 001 000)2.
Decryption. Observe that decryption works in the exact same way:
Dk(c)= c�PRG(k)= (010 001 000)2� (111 110 001)2=(101 111 001)2.
Note. The keystream continues as PRG(k) = 7; 6; 1; 0; 3; 2; 5; 4; ::: At this point it repeats itself because we
obtained the value 4, which was our seed. Since the state of this PRG only depends on the value of xn, and there
are 8 possible values for xn, the period 8 is the longest possible. The previous (extra) example gave conditions
on the PRG that guarantee that the period is as long as possible.

Example 52. Can you think of a way in which the numbers produced by a linear congruential
generator differ from truly random ones?
Solution. An easy observation for our small examples is the following: by construction, xn+1�axn+b (modm),
individual values don't repeat unless a full period is reached and everything repeats. Truly random numbers do
repeat every now and then (however, if m is large, then this observation is not exactly practical).
Of course, knowing the parameters a; b; m, the numbers generated by the PRG are terribly predictable.
Knowing just one number, we can produce all the next ones (as well as the ones before). A PRG that is safe for
cryptographic purposes should not be predictable like that! (See next example.)

The next example illustrates the vulnerability of stream ciphers, based on predictable PRGs.

Recall that it is common to know or guess pieces of plaintexts; for instance, every PDF begins with %PDF.

Example 53. Eve intercepts the ciphertext c=(111 111 111)2. It is known that a stream cipher
with PRG xn+1� 5xn+ 3 (mod 8) was used for encryption. Eve also knows that the plaintext
begins with m=(110 1:::)2. Help her crack the ciphertext!

Solution. Since c = m � PRG, we learn that the initial piece of the keystream is PRG = m � c =
(110 1:::)2� (111 1:::)2=(001 0:::)2. Since each xn is 3 bits, we conclude that x1=(001)2=1.
Because the PRG is predictable, we can now recreate the entire keystream! Using xn+1� 5xn+3 (mod8), we
find x2� 0, x3� 3, ::: In other words, PRG=1; 0; 3; :::=(001 000 011 :::)2.
Hence, Eve can decrypt the ciphertext and obtain m = c � PRG = (111 111 111)2 � (001 000 011)2 =
(110 111 100)2.

Armin Straub
straub@southalabama.edu

16

