
Notes for Lecture 5 Fri, 1/23/2026

Vigenere cipher (vector shift cipher)

See Section 2.3 of our book for a full description of the Vigenere cipher.

This cipher was long believed by many (until early 20th) to be secure against ciphertext only attacks (more on
the classification of attacks shortly).

Example 25. Let us encrypt HOLIDAY using a Vigenere cipher with key BAD (i.e. 1; 0; 3).

H O L I D A Y
+ B A D B A D B
= I O O J D D Z

Hence, the ciphertext is IOOJDDZ.

Example 26. (bonus challenge!) You find a post-it with the following message:

NIVU QV JR DTTS ULIFI FOI KIVVF

Can you make any sense of it? Word on the street is that Alice was using a Vigenere cipher with
key of size 3 with last letter R.

(To collect a bonus point, send me an email before next class with the plaintext and how you found it.)

If you can decipher the above message, you have successfully mounted a ciphertext only attack.
That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).
This is the worst kind of vulnerability.

Attacks

So far, we considered the weakest kind of attack only: namely, a ciphertext only attack. And,
even then, the historical ciphers prove to be terribly insecure.

However, we need to also worry about attacks where our enemy has additional insight.

� In a known plaintext attack, the enemy somehow has knowledge of a plaintext-ciphertext pair (m; c).

� In a chosen plaintext attack, the enemy can, herself, compute c=E(m) for a chosen plaintextm (�gained
some sort of access to our encryption device�).

� In a chosen ciphertext attack, the enemy can, herself, compute m = D(c) for a chosen ciphertext c
(�gained some sort of access to our decryption device�).

There exist many variations of these. Sometimes, the attacker can make several choices (maybe even adaptively),
sometimes she only has partial information.

Example 27. Alice sends the ciphertext BKNDKGBQ to Bob. Somehow, Eve has learned
that Alice is using the Vigenere cipher and that the plaintext is ALLCLEAR. Next day, Alice
sends the message DNFFQGE. Crack it and figure out the key that Alice used! (What kind
of attack is this?)
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Solution. This is a known plaintext attack.
Since m+ k= c (to be interpreted characterwise, modulo 26, and with k repeated as necessary), we can find k
simply as k= c¡m.
For instance, since A (value 0!) got encrypted to B, the first letter of the key is B.

c B K N D K G B Q
m ¡ A L L C L E A R
k = B Z C B Z C B Z

We conclude that the key is k=BZC.
Note. Now, we can decrypt any future message that Alice sends using this key. For instance, we easily decrypt
DNFFQGE to CODERED (using m= c¡ k).

All of the historical ciphers we have seen, including the substitution cipher that we will discuss
shortly, fall apart completely under a known plaintext attack.

Euler's theorem

Example 28. Compute 31003 (mod101).
Solution. Since 101 is a prime, 3100� 1 (mod101) by Fermat's little theorem.
Because 3100� 30 (mod101), this enables us to reduce exponents modulo 100.
In particular, since 1003� 3 (mod100), we have 31003� 33= 27 (mod101).

Fermat's little theorem is a special case of Euler's theorem :

Theorem 29. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).
Proof. Euler's theorem can be proved along the lines of our earlier proof of Fermat's little theorem. The only
adjustment is to only start with multiples ka where k is invertible modulo n. There are �(n) such residues k,
and so that's where Euler's phi function comes in. Can you complete the proof? �

Example 30. What are the last two (decimal) digits of 37082?
Solution. We need to determine 37082 (mod100). �(100)= �(2252)= �(22)�(52)= (22¡ 21)(52¡ 51)=40.
Since gcd (3; 100)= 1 and 7082� 2 (mod40), Euler's theorem shows that 37082� 32=9 (mod100).

Binary exponentiation

Example 31. Compute 325 (mod 101).
Solution. Fermat's little theorem is not helpful here.
Instead, we do binary exponentiation:
32=9, 34= 81�¡20, 38� (¡20)2= 400�¡4, 316� (¡4)2� 16, all modulo 101
25= 16+8+1 [Every integer n>0 can be written as a sum of distinct powers of 2 (in a unique way).]

Hence, 325=316 � 38 � 31� 16 � (¡4) � 3=¡192� 10 (mod101).

Example 32. (extra practice) Compute 220 (mod41).
Solution. 22=4, 24= 16, 28= 256� 10, 216� 100� 18. Hence, 220=216 � 24� 18 � 16= 288� 1 (mod41).
Or: 25= 32�¡9 (mod41). Hence, 220=(25)4� (¡9)4= 812� (¡1)2=1 (mod41).
Comment. Write a=220 (mod41). It follows from Fermat's little theorem that a2=240� 1 (mod41). The
argument below shows that a��1 (mod41) [but we don't know which until we do the calculation].

The equation x2� 1 (mod p) is equivalent to (x¡ 1)(x+1)� 0 (mod p) [b/c (x¡ 1)(x+1)=x2¡ 1]. Since
p is a prime and pj(x¡ 1)(x+1), we must have pj(x¡ 1) or pj(x+1). In other words, x��1 (mod p).
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