Notes for Lecture 5 Fri, 1/23/2026

 Vigenere cipher (vector shift cipher)

See Section 2.3 of our book for a full description of the Vigenere cipher.

This cipher was long believed by many (until early 20th) to be secure against ciphertext only attacks (more on
the classification of attacks shortly).

Example 25. Let us encrypt HOLID AY using a Vigenere cipher with key BAD (i.e. 1,0, 3).

H|O|L|I |D|A|Y
+|B|A|D|B|A|D|B
=1 |0|0|J|D|D|Z

Hence, the ciphertext is IOOJD D Z.

Example 26. (bonus challenge!) You find a post-it with the following message:
NIVU QV JR DTTS ULIFI FOI KIVVF

Can you make any sense of it? Word on the street is that Alice was using a Vigenere cipher with
key of size 3 with last letter R.

(To collect a bonus point, send me an email before next class with the plaintext and how you found it.)

If you can decipher the above message, you have successfully mounted a ciphertext only attack.

That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).
This is the worst kind of vulnerability.

| Attacks |

So far, we considered the weakest kind of attack only: namely, a ciphertext only attack. And,
even then, the historical ciphers prove to be terribly insecure.
However, we need to also worry about attacks where our enemy has additional insight.

e In a known plaintext attack, the enemy somehow has knowledge of a plaintext-ciphertext pair (m, c).

e Inachosen plaintext attack, the enemy can, herself, compute c= E(m) for a chosen plaintext m (“gained
some sort of access to our encryption device”).

e In a chosen ciphertext attack, the enemy can, herself, compute m = D(c) for a chosen ciphertext ¢
(“gained some sort of access to our decryption device”).

There exist many variations of these. Sometimes, the attacker can make several choices (maybe even adaptively),
sometimes she only has partial information.

Example 27. Alice sends the ciphertext BK N D K G B () to Bob. Somehow, Eve has learned
that Alice is using the Vigenere cipher and that the plaintextis AL L C' L E' A R. Next day, Alice
sends the message D N FF'F'(Q G E. Crack it and figure out the key that Alice used! (What kind
of attack is this?)

Armin Straub 8
straub@southalabama.edu



Solution. This is a known plaintext attack.
Since m + k = ¢ (to be interpreted characterwise, modulo 26, and with k repeated as necessary), we can find k
simply as k=c — m.

For instance, since A (value 0!) got encrypted to B, the first letter of the key is B.

c B[K|N|[D|[K|G|B[Q
m||—|A|L|L|C|L|E|A|R
k||=|Blz|C|B|Zz|C|B|Z

We conclude that the key is k= BZC.

Note. Now, we can decrypt any future message that Alice sends using this key. For instance, we easily decrypt
DNFFQGE to CODERED (using m=c—k).

All of the historical ciphers we have seen, including the substitution cipher that we will discuss
shortly, fall apart completely under a known plaintext attack.

Euler’s theorem
| |

Example 28. Compute 3!%% (mod 101).

Solution. Since 101 is a prime, 3'°°=1 (mod 101) by Fermat's little theorem.
Because 399 =3° (mod 101), this enables us to reduce exponents modulo 100.
In particular, since 1003 =3 (mod 100), we have 3993 =33 =27 (mod 101).

Fermat's little theorem is a special case of Euler's theorem :

Theorem 29. (Euler’s theorem) If n>1 and ged (a,n) =1, then a?™ =1 (modn).

Proof. Euler's theorem can be proved along the lines of our earlier proof of Fermat's little theorem. The only
adjustment is to only start with multiples ka where k is invertible modulo n. There are ¢(n) such residues k,
and so that's where Euler’'s phi function comes in. Can you complete the proof? O

Example 30. What are the last two (decimal) digits of 370827
Solution. We need to determine 37°82 (mod 100). ¢(100) = ¢(2252) = ¢(22)p(52) = (22 — 21)(52 — 51) = 40.
Since gcd (3,100) =1 and 7082 =2 (mod 40), Euler’s theorem shows that 37982 =32 =9 (mod 100).

| Binary exponentiation |

Example 31. Compute 3%° (mod 101).

Solution. Fermat'’s little theorem is not helpful here.

Instead, we do binary exponentiation:

32=9,3*=81=-20, 33=(—20)2=400= —4, 3'6=(—4)2 =16, all modulo 101

25=16+ 8 + 1 [Every integer n >0 can be written as a sum of distinct powers of 2 (in a unique way).]
Hence, 32°=316.38.31=16-(—4)-3=—-192=10 (mod 101).

Example 32. (extra practice) Compute 22° (mod 41).
Solution. 22=4, 24=16, 28 =256= 10, 2! =100=18. Hence, 220 =216.24=18.16=288=1 (mod 41).
Or: 2°=32=-9 (mod41l). Hence, 220 = (25)%=(-9)*=812=(-1)2=1 (mod41).
Comment. Write a =22 (mod 41). It follows from Fermat'’s little theorem that a? =2%° =1 (mod 41). The
argument below shows that a = £1 (mod 41) [but we don't know which until we do the calculation].

The equation 22 =1 (mod p) is equivalent to (x — 1)(z+ 1) =0 (mod p) [b/c (x — 1)(z+ 1) =22 — 1]. Since
pis a prime and p|(z — 1)(x + 1), we must have p|(z — 1) or p|(z+ 1). In other words, z =+1 (mod p).
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