

Historical examples of symmetric encryption

Alice wants to send a secret message to Bob.

What Alice sends will be transmitted through an unsecure medium (like the internet), meaning that others can read it. However, it is important to Alice and Bob that no one else can understand it.

The original message is referred to as the **plaintext** m . What Alice actually sends is called the **ciphertext** c (the encrypted message).

Symmetric encryption algorithms rely on a secret key k (from some **key space**) shared by Alice and Bob (but unknown to anyone else).

Our ultimate goal will be to secure messaging against both:

- eavesdropping (goal: **confidentiality**)
- tampering (goal: **integrity** and, even stronger, **authenticity**)

The symmetric encryption approach, by itself, cannot fully protect against tampering. For instance, an attacker can collect previously sent messages, resend them, or use them to replace new messages. (You could preface each message with something like a time stamp to address these issues. But that's getting ahead of ourselves; and there are better ways.)

Shift cipher

The alphabet for our messages will be A, B, \dots, Z , which we will identify with $0, 1, \dots, 25$.

So, for instance, C is identified with the number 2.

Example 21. (shift cipher) A key is an integer $k \in \{0, 1, \dots, 25\}$. Encryption works character by character using

$$E_k: \quad x \mapsto x + k \pmod{26}.$$

Obviously, the decryption D_k works as $x \mapsto x - k \pmod{26}$.

The **key space** is $\{0, 1, \dots, 25\}$. It has size 26. [Well, $k = 0$ is a terrible key. Maybe we should exclude it.]

For instance. If $k = 1$, then the message *HELLO* is encrypted as *IFMMP*.

If $k = 2$, then the message *HELLO* is encrypted as *JGNNQ*.

Historic comment. Caesar encrypted some private messages with a shift cipher (typically using $k = 3$). The shift cipher is therefore also often called Caesar's cipher.

While completely insecure today, it was fairly secure at the time (with many of his enemies being illiterate).

Modern comment. Many message boards on the internet “encrypt” things like spoilers or solutions using a shift cipher with $k = 13$. This is called ROT13. What's special about the choice $k = 13$?

Solution. Since $-13 \equiv 13 \pmod{26}$, for ROT13, encryption and decryption are the same!

Example 22. (affine cipher) A slight upgrade to the shift cipher, we encrypt each character as

$$E_{(a,b)}: \quad x \mapsto ax + b \pmod{26}.$$

How does the decryption work? How large is the key space?

Solution. Each character x is decrypted via $x \mapsto a^{-1}(x - b) \pmod{26}$.

The key is $k = (a, b)$. Since a has to be invertible modulo 26, there are $\phi(26) = \phi(2) \cdot \phi(13) = 12$ possibilities for a . There are 26 possibilities for b . Hence, the key space has size $12 \cdot 26 = 312$.

Fermat's little theorem

Example 23. (warmup) What a terrible blunder... Explain what is wrong!

$$(\text{incorrect!}) \quad 10^9 \equiv 3^2 = 9 \equiv 2 \pmod{7}$$

Solution. $10^9 = 10 \cdot 10 \cdot \dots \cdot 10 \equiv 3 \cdot 3 \cdot \dots \cdot 3 = 3^9$. Hence, $10^9 \equiv 3^9 \pmod{7}$.

However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).

Corrected calculation. $3^2 \equiv 2$, $3^4 \equiv 4$, $3^8 \equiv 16 \equiv 2$. Hence, $3^9 = 3^8 \cdot 3^1 \equiv 2 \cdot 3 \equiv -1 \pmod{7}$.

By the way, this approach of computing powers via exponents that are 2, 4, 8, 16, 32, ... is called **binary exponentiation**. It is crucial for efficiently computing large powers.

Corrected calculation (using Fermat). $3^6 \equiv 1$ just like $3^0 = 1$. Hence, we are allowed to reduce exponents modulo 6. Hence, $3^9 \equiv 3^3 \equiv -1 \pmod{7}$.

Theorem 24. (Fermat's little theorem) Let p be a prime, and suppose that $p \nmid a$. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof. (beautiful!) Since a is invertible modulo p , the first $p - 1$ multiples of a ,

$$a, 2a, 3a, \dots, (p-1)a$$

are all different modulo p . Clearly, none of them is divisible by p .

Consequently, these values must be congruent (in some order) to the values $1, 2, \dots, p-1$ modulo p . Thus,

$$a \cdot 2a \cdot 3a \cdot \dots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \pmod{p}.$$

Cancelling the common factors (allowed because p is prime!), we get $a^{p-1} \equiv 1 \pmod{p}$. □

Remark. The “little” in this theorem’s name is to distinguish this result from Fermat’s last theorem that $x^n + y^n = z^n$ has no integer solutions if $n > 2$ (only recently proved by Wiles).