Midterm #2

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 35 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (3+3 points) Bob's public RSA key is N = 33, e = 13.

- (a) Encrypt the message m = 5 and send it to Bob.
- (b) Determine Bob's secret private key d.

Problem 2. (4 points) Alice and Bob select p = 19 and g = 15 for a Diffie-Hellman key exchange. Alice sends 9 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Problem 3. (2+4 points) Consider the finite field $GF(2^4)$ constructed using $x^4 + x + 1$.

- (a) Multiply x^2 and $x^2 + 1$ in $GF(2^4)$.
- (b) Determine the inverse of x^2 in $GF(2^4)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

 $E_k(b_1b_2b_3) = (b_2b_1b_3) \oplus k.$

Encrypt $m = (100 \ 100 \ 100 \dots)_2$ using $k = (110)_2$ and CBC mode $(IV = (111)_2)$.

Problem 5. (15 points) Fill in the blanks.

- (a) Despite its flaws, it is fine to use the Fermat primality test for
- (b) As part of the Miller–Rabin test, it is computed that $26^{147} \equiv 495$, $26^{294} \equiv 1 \pmod{589}$.

	What do we conclude?
(c)	DES has a block size of bits, a key size of bits and consists of rounds.
(d)	AES-256 has a block size of bits, a key size of bits and consists of rounds.
(e)	Suppose we are using 3DES with key $k = (k_1, k_2, k_3)$, where each k_i is an independent DES key.
	Then m is encrypted to $c =$. The effective key size is bits.
(f)	Bob's public ElGamal key is (p, g, h) . To send m to Bob, we encrypt it as
	c = (Indicate if any random choices are involved.)
(g)	For his ElGamal key, which of p, g and x must Bob choose randomly?
(h)	For his RSA key, which of p, q and e must Bob choose randomly?
(i)	If the public ElGamal key is (p, g, h) , then the private key x can be determined by solving
(j)	Which is the only nonlinear layer of AES?
(k)	For his public RSA key, Bob selected $N = 65$. The smallest choice for e with $e \ge 2$ is
(1)	For his public ElGamal key, Bob selected $p = 53$. He has choices for g .
(m)	2 is a primitive root modulo 13. For which x is 2^x a primitive root modulo 13?
(n)	If x has (multiplicative) order N modulo m , then x^{10} has order
(o)	The computational Diffie–Hellman problem is: given , determine

(extra scratch paper)