Good luck!

Problem 1. ($3+3$ points) Bob's public RSA key is $N=33, e=13$.
(a) Encrypt the message $m=5$ and send it to Bob.
(b) Determine Bob's secret private key d.

Problem 2. (4 points) Alice and Bob select $p=19$ and $g=15$ for a Diffie-Hellman key exchange. Alice sends 9 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Problem 3. ($2+4$ points) Consider the finite field GF $\left(2^{4}\right)$ constructed using $x^{4}+x+1$.
(a) Multiply x^{2} and $x^{2}+1$ in $\operatorname{GF}\left(2^{4}\right)$.
(b) Determine the inverse of x^{2} in $\mathrm{GF}\left(2^{4}\right)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

$$
E_{k}\left(b_{1} b_{2} b_{3}\right)=\left(b_{2} b_{1} b_{3}\right) \oplus k
$$

Encrypt $m=(100100100 \ldots)_{2}$ using $k=(110)_{2}$ and CBC mode $\left(\operatorname{IV}=(111)_{2}\right)$.
\square

Problem 5. (15 points) Fill in the blanks.
(a) Despite its flaws, it is fine to use the Fermat primality test for
(b) As part of the Miller-Rabin test, it is computed that $26^{147} \equiv 495,26^{294} \equiv 1(\bmod 589)$. What do we conclude?
(c) DES has a block size of
 bits and consists of \square rounds.
(d) AES-256 has a block size of \square bits, a key size of \square bits and consists of \square rounds.
(e) Suppose we are using 3 DES with key $k=\left(k_{1}, k_{2}, k_{3}\right)$, where each k_{i} is an independent DES key.

(f) Bob's public ElGamal key is (p, g, h). To send m to Bob, we encrypt it as

(g) For his ElGamal key, which of p, g and x must Bob choose randomly?

(i) If the public ElGamal key is (p, g, h), then the private key x can be determined by solving
\square
(j) Which is the only nonlinear layer of AES? \square
(k) For his public RSA key, Bob selected $N=65$. The smallest choice for e with $e \geqslant 2$ is
(l) For his public ElGamal key, Bob selected $p=53$. He has \square choices for g.
(m) 2 is a primitive root modulo 13 . For which x is 2^{x} a primitive root modulo $13 ?$
(n) If x has (multiplicative) order N modulo m, then x^{10} has order \square.
(o) The computational Diffie-Hellman problem is: given

(extra scratch paper)

