## Good luck!

Problem 1. ( $3+\mathbf{3}$ points) Bob's public RSA key is $N=33, e=13$.
(a) Encrypt the message $m=5$ and send it to Bob.
(b) Determine Bob's secret private key $d$.

## Solution.

(a) The ciphertext is $c=m^{e}(\bmod N)$. Here, $c \equiv 5^{13}(\bmod 33)$.
$5^{2}=25 \equiv-8,5^{4} \equiv 64 \equiv-2,5^{8} \equiv 4(\bmod 33)$. Hence, $5^{13}=5^{8} \cdot 5^{4} \cdot 5 \equiv 4 \cdot(-2) \cdot 5 \equiv 26(\bmod 33)$. Hence, $c=26$.
(b) $N=3 \cdot 11$, so that $\phi(N)=2 \cdot 10=20$.

To find $d$, we compute $e^{-1}(\bmod 20)$ using the extended Euclidean algorithm:

$$
\begin{aligned}
\boxed{20} & =1 \cdot 13+7 \\
\hline 13 & =2 \cdot 7-1
\end{aligned}
$$

Backtracking through this, we find that Bézout's identity takes the form

$$
1=2 \cdot 7-13=2 \cdot(\boxed{20}-1 \cdot \boxed{13})-13=2 \cdot \boxed{20}-3 \cdot \boxed{13} \text {. }
$$

Hence, $13^{-1} \equiv-3 \equiv 17(\bmod 20)$ and, so, $d=17$.
Comment. Bob's choice of $e=13$ is actually functionally equivalent to $e=3\left(\right.$ for instance, $\left.5^{3} \equiv 26(\bmod 33)\right)$. Similarly, $d$ can be obtained as $e^{-1}(\bmod 10)$. Can you explain these claims?

Problem 2. (4 points) Alice and Bob select $p=19$ and $g=15$ for a Diffie-Hellman key exchange. Alice sends 9 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Solution. If Alice's secret is $y$ and Bob's secret is $x$, then $15^{y} \equiv 9$ and $15^{x} \equiv 12(\bmod 19)$.
We compute $15^{2}, 15^{3}, \ldots$ until we find either 9 or 12 :
$15^{2} \equiv(-4)^{2} \equiv-3,15^{3} \equiv-3 \cdot(-4) \equiv 12(\bmod 19)$
Hence, Bob's secret is $x=3$. The shared secret is $\left(15^{y}\right)^{x}=9^{3} \equiv 5 \cdot 9 \equiv 7(\bmod 19)$.

Problem 3. ( $2+4$ points) Consider the finite field $\mathrm{GF}\left(2^{4}\right)$ constructed using $x^{4}+x+1$.
(a) Multiply $x^{2}$ and $x^{2}+1$ in $\operatorname{GF}\left(2^{4}\right)$.
(b) Determine the inverse of $x^{2}$ in $\mathrm{GF}\left(2^{4}\right)$.

Solution.
(a) $x^{2}\left(x^{2}+1\right)=x^{4}+x^{2}=x^{2}+x+1$ in $\mathrm{GF}\left(2^{4}\right)$.
(b) We use the extended Euclidean algorithm, and always reduce modulo 2:

$$
\begin{aligned}
x^{4}+x+1 & \equiv x^{2} \cdot x^{2}+(x+1) \\
x^{2} & \equiv(x+1) \cdot x+1+1
\end{aligned}
$$

Backtracking through this, we find that Bézout's identity takes the form

$$
1 \equiv x^{2}+(x+1) \cdot x+1 \equiv x^{2}+(x+1) \cdot\left(\boxed{x^{4}+x+1}+x^{2} \cdot x^{2}\right) \equiv(x+1) x^{4}+x+1+\left(x^{3}+x^{2}+1\right) \cdot x^{2}
$$

Hence, $\left(x^{2}\right)^{-1}=x^{3}+x^{2}+1$ in $\operatorname{GF}\left(2^{4}\right)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

$$
E_{k}\left(b_{1} b_{2} b_{3}\right)=\left(b_{2} b_{1} b_{3}\right) \oplus k
$$

Encrypt $m=(100100100 \ldots)_{2}$ using $k=(110)_{2}$ and CBC mode $\left(\operatorname{IV}=(111)_{2}\right)$.

Solution. $m=m_{1} m_{2} m_{3} \ldots$ with $m_{1}=m_{2}=m_{3}=100$.
$c_{0}=111$
$c_{1}=E_{k}\left(m_{1} \oplus c_{0}\right)=E_{k}(100 \oplus 111)=E_{k}(011)=101 \oplus 110=011$
$c_{2}=E_{k}\left(m_{2} \oplus c_{1}\right)=E_{k}(100 \oplus 011)=E_{k}(111)=111 \oplus 110=001$
$c_{3}=E_{k}\left(m_{3} \oplus c_{2}\right)=E_{k}(100 \oplus 001)=E_{k}(101)=011 \oplus 110=101$
Hence, the ciphertext is $c=c_{0} c_{1} c_{2} c_{3} \ldots=(111011001101 \ldots)$.

Problem 5. (15 points) Fill in the blanks.
(a) Despite its flaws, it is fine to use the Fermat primality test for
(b) As part of the Miller-Rabin test, it is computed that $26^{147} \equiv 495,26^{294} \equiv 1(\bmod 589)$.

(c) DES has a block size of $\square$ bits, a key size of $\square$ bits and consists of $\square$ rounds.
(d) AES-256 has a block size of $\square$ bits, a key size of $\square$ bits and consists of $\square$ rounds.
(e) Suppose we are using 3DES with key $k=\left(k_{1}, k_{2}, k_{3}\right)$, where each $k_{i}$ is an independent DES key.

(f) Bob's public ElGamal key is $(p, g, h)$. To send $m$ to Bob, we encrypt it as

(g) For his ElGamal key, which of $p, g$ and $x$ must Bob choose randomly? $\square$
(h) For his RSA key, which of $p, q$ and $e$ must Bob choose randomly? $\square$
(i) If the public ElGamal key is $(p, g, h)$, then the private key $x$ can be determined by solving
$\square$
(j) Which is the only nonlinear layer of AES? $\square$
(k) For his public RSA key, Bob selected $N=65$. The smallest choice for $e$ with $e \geqslant 2$ is
(l) For his public ElGamal key, Bob selected $p=53$. He has $\square$ choices for $g$.
(m) 2 is a primitive root modulo 13 . For which $x$ is $2^{x}$ a primitive root modulo $13 ?$
(n) If $x$ has (multiplicative) order $N$ modulo $m$, then $x^{10}$ has order $\square$.
(o) The computational Diffie-Hellman problem is: given $\square$, determine $\square$.

## Solution.

(a) Despite its flaws, it is fine to use the Fermat primality test for large random numbers.
(b) Since $495 \not \equiv \pm 1(\bmod 589)$, we conclude that 589 is not a prime.
(c) DES has a block size of 64 bits, a key size of 56 bits and consists of 16 rounds.
(d) AES- 256 has a block size of 128 bits, a key size of 256 bits and consists of 14 rounds.
(e) $m$ is encrypted to $c=E_{k_{3}}\left(D_{k_{2}}\left(E_{k_{1}}(m)\right)\right)$.

The effective key size is 112 bits (because of the meet-in-the-middle attack).
(f) Bob's public ElGamal key is $(p, g, h)$. To send $m$ to Bob, we encrypt it as $c=\left(g^{y}, h^{y} m\right)$ (all modulo $p$ ), where $y$ was randomly chosen.
(g) $x$ must be chosen randomly.
(h) $p$ and $q$ must be chosen randomly.
(i) If the public ElGamal key is $(p, g, h)$, then the private key $x$ can be determined by solving $g^{x} \equiv h(\bmod p)$.
(j) The nonlinear layer of AES is ByteSub.
(k) Since $\phi(65)=48$, the smallest choice for $e$ with $e \geqslant 2$ is 5 .
(l) He has $\phi(\phi(53))=\phi(52)=\phi(4) \phi(13)=24$ choices for $g$.
(m) $2^{x}$ a primitive root modulo 13 if and only if $\operatorname{gcd}(x, 12)=1$. These $x$ (modulo 12 ) are $1,5,7,11$. (The total number is $\phi(\phi(13))=\phi(12)=\phi(4) \phi(3)=(4-2)(3-1)=4$.
(n) If $x$ has (multiplicative) order $N$ modulo $m$, then $x^{10}$ has order $N / \operatorname{gcd}(10, N)$.
(o) The CDH problem is the following: given $g, g^{x}, g^{y}(\bmod p)$, find $g^{x y}(\bmod p)$.
(extra scratch paper)

