No notes, calculators or tools of any kind are permitted. There are 35 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (3+3 points) Bob's public RSA key is N = 33, e = 13.

- (a) Encrypt the message m=5 and send it to Bob.
- (b) Determine Bob's secret private key d.

Solution.

- (a) The ciphertext is $c = m^e \pmod{N}$. Here, $c \equiv 5^{13} \pmod{33}$. $5^2 = 25 \equiv -8, \ 5^4 \equiv 64 \equiv -2, \ 5^8 \equiv 4 \pmod{33}.$ Hence, $5^{13} = 5^8 \cdot 5^4 \cdot 5 \equiv 4 \cdot (-2) \cdot 5 \equiv 26 \pmod{33}$. Hence, c = 26.
- (b) $N = 3 \cdot 11$, so that $\phi(N) = 2 \cdot 10 = 20$.

To find d, we compute $e^{-1} \pmod{20}$ using the extended Euclidean algorithm:

$$\begin{array}{ccc}
20 & = & 1 \cdot \boxed{13} + 7 \\
13 & = & 2 \cdot \boxed{7} - 1
\end{array}$$

Backtracking through this, we find that Bézout's identity takes the form

$$1 = 2 \cdot \boxed{7} - \boxed{13} = 2 \cdot \left(\boxed{20} - 1 \cdot \boxed{13}\right) - \boxed{13} = 2 \cdot \boxed{20} - 3 \cdot \boxed{13}$$

Hence, $13^{-1} \equiv -3 \equiv 17 \pmod{20}$ and, so, d = 17.

Comment. Bob's choice of e = 13 is actually functionally equivalent to e = 3 (for instance, $5^3 \equiv 26 \pmod{33}$). Similarly, d can be obtained as $e^{-1} \pmod{10}$. Can you explain these claims?

Problem 2. (4 points) Alice and Bob select p=19 and g=15 for a Diffie-Hellman key exchange. Alice sends 9 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Solution. If Alice's secret is y and Bob's secret is x, then $15^y \equiv 9$ and $15^x \equiv 12 \pmod{19}$.

We compute $15^2, 15^3, \ldots$ until we find either 9 or 12:

$$15^2 \equiv (-4)^2 \equiv -3, \ 15^3 \equiv -3 \cdot (-4) \equiv 12 \pmod{19}$$

Hence, Bob's secret is x = 3. The shared secret is $(15^y)^x = 9^3 \equiv 5 \cdot 9 \equiv 7 \pmod{19}$.

Problem 3. (2+4 points) Consider the finite field $GF(2^4)$ constructed using $x^4 + x + 1$.

- (a) Multiply x^2 and $x^2 + 1$ in $GF(2^4)$.
- (b) Determine the inverse of x^2 in $GF(2^4)$.

Solution.

(a)
$$x^2(x^2+1) = x^4 + x^2 = x^2 + x + 1$$
 in GF(2⁴).

(b) We use the extended Euclidean algorithm, and always reduce modulo 2:

$$\begin{array}{c}
x^4 + x + 1 \\
\hline
x^2
\end{array} \equiv x^2 \cdot \boxed{x^2} + (x+1) \\
\hline
x^2
\equiv (x+1) \cdot \boxed{x+1} + 1$$

Backtracking through this, we find that Bézout's identity takes the form

$$1 \ \equiv \ \boxed{x^2} + (x+1) \cdot \boxed{x+1} \\ \equiv \boxed{x^2} + (x+1) \cdot \left(\boxed{x^4 + x + 1} + x^2 \cdot \boxed{x^2} \right) \\ \equiv (x+1) \boxed{x^4 + x + 1} + (x^3 + x^2 + 1) \cdot \boxed{x^2}$$

Hence, $(x^2)^{-1} = x^3 + x^2 + 1$ in $GF(2^4)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

$$E_k(b_1b_2b_3) = (b_2b_1b_3) \oplus k.$$

Encrypt $m = (100 \ 100 \ 100 \dots)_2$ using $k = (110)_2$ and CBC mode (IV = $(111)_2$).

Solution. $m = m_1 m_2 m_3 \dots$ with $m_1 = m_2 = m_3 = 100$.

 $c_0 = 111$

$$c_1 = E_k(m_1 \oplus c_0) = E_k(100 \oplus 111) = E_k(011) = 101 \oplus 110 = 011$$

$$c_2 = E_k(m_2 \oplus c_1) = E_k(100 \oplus 011) = E_k(111) = 111 \oplus 110 = 001$$

$$c_3 = E_k(m_3 \oplus c_2) = E_k(100 \oplus 001) = E_k(101) = 011 \oplus 110 = 101$$

Hence, the ciphertext is $c = c_0 c_1 c_2 c_3 \dots = (111\ 011\ 001\ 101\ \dots)$.

Problem 5. (15 points) Fill in the blanks.

(a)	Despite its flaws, it is fine to use the Fermat primality test for					
(b)	As part of the Miller–Rabin test, it is computed that $26^{147} \equiv 495$, $26^{294} \equiv 1 \pmod{589}$.					
	What do we conclude?					
(c)	DES has a block size of bits, a key size of bits and consists of rounds.					
(d)	AES-256 has a block size of bits, a key size of bits and consists of rounds.					
(e)	Suppose we are using 3DES with key $k = (k_1, k_2, k_3)$, where each k_i is an independent DES key.					
	Then m is encrypted to $c = $. The effective key size is bits.					
(f)	Bob's public ElGamal key is (p, g, h) . To send m to Bob, we encrypt it as					
	c = igcup . (Indicate if any random choices are involved.)					
(g)	For his ElGamal key, which of p, g and x must Bob choose randomly?					
(h)	For his RSA key, which of p, q and e must Bob choose randomly?					
(i)	If the public ElGamal key is (p, g, h) , then the private key x can be determined by solving					
(j)	Which is the only nonlinear layer of AES?					
(k)	For his public RSA key, Bob selected $N=65$. The smallest choice for e with $e\geqslant 2$ is					
(1)	For his public ElGamal key, Bob selected $p=53$. He has choices for g .					

(m)	2 is a primitive root modulo 13. For which x is 2^x a primitive root modulo 13.	rimitive root	modulo 13?		
(n)	If x has (multiplicative) order N modulo m , then x^1	⁰ has order			
(o)	The computational Diffie–Hellman problem is: given			, determine	

Solution.

- (a) Despite its flaws, it is fine to use the Fermat primality test for large random numbers.
- (b) Since $495 \not\equiv \pm 1 \pmod{589}$, we conclude that 589 is not a prime.
- (c) DES has a block size of 64 bits, a key size of 56 bits and consists of 16 rounds.
- (d) AES-256 has a block size of 128 bits, a key size of 256 bits and consists of 14 rounds.
- (e) m is encrypted to $c = E_{k_3}(D_{k_2}(E_{k_1}(m)))$.

The effective key size is 112 bits (because of the meet-in-the-middle attack).

- (f) Bob's public ElGamal key is (p, g, h). To send m to Bob, we encrypt it as $c = (g^y, h^y m)$ (all modulo p), where y was randomly chosen.
- (g) x must be chosen randomly.
- (h) p and q must be chosen randomly.
- (i) If the public ElGamal key is (p, g, h), then the private key x can be determined by solving $g^x \equiv h \pmod{p}$.
- (j) The nonlinear layer of AES is ByteSub.
- (k) Since $\phi(65) = 48$, the smallest choice for e with $e \ge 2$ is 5.
- (1) He has $\phi(\phi(53)) = \phi(52) = \phi(4)\phi(13) = 24$ choices for g.
- (m) 2^x a primitive root modulo 13 if and only if gcd(x, 12) = 1. These x (modulo 12) are 1, 5, 7, 11. (The total number is $\phi(\phi(13)) = \phi(12) = \phi(4)\phi(3) = (4-2)(3-1) = 4$.)
- (n) If x has (multiplicative) order N modulo m, then x^{10} has order $N/\gcd(10, N)$.
- (o) The CDH problem is the following: given $g, g^x, g^y \pmod{p}$, find $g^{xy} \pmod{p}$.

(extra scratch paper)