
Preparing for Midterm #2 MATH 481/581 � Cryptography
Midterm: Friday, Mar 29, 2024

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1.

(a) If you can only do a single modular computation, how would you check whether a huge randomly selected
number N is prime or not?

(b) Which flaw of the Fermat primality test renders it unsuitable as a general primality test? How can this flaw
be fixed?

(c) Despite the flaw in the previous item, in which scenario is it fine to use the Fermat primality test regardless?

(d) We want to use the Miller�Rabin primality test to decide whether N = 377 is prime. Each time, we randomly
choose a base a (and only do a single iteration of Miller�Rabin) and compute the following:

� a= 12: 1247� 220, 1294� 144, 12188� 1, 12376� 1 (mod 377)

� a= 70: 7047� 307, 7094� 376, 70188� 1, 70376� 1 (mod 377)

� a= 80: 8047� 332, 8094� 140, 80188� 373, 80376� 16 (mod 377)

� a= 233: 23347� 233, 23394� 1, 233188� 1, 233376� 1 (mod 377)

In each case, what do we conclude? (Also point out which calculations were unnecessary.) Which of the a are
strong liars? Which are Fermat liars?

(e) Repeat the previous problem for N = 247 and the following computations:

� a= 12: 12123� 246, 12246� 1 (mod247)

� a= 17: 17123� 64, 17246� 144 (mod 247)

� a= 27: 27123� 170, 27246� 1 (mod247)

� a= 68: 68123� 1, 68246� 1 (mod 247)

Solution.

(a) Compute 2N¡1 (modN) (using binary exponentiation). If this is 2N¡1�/ 1 (modN), then N is not a prime.
[There's nothing special about 2, by the way.]

Otherwise, N is a prime or 2 is a Fermat liar modulo N (but the latter is exceedingly unlikely for a huge
randomly selected number N ; a bonus challenge from class indicates that this is almost as unlikely as randomly
running into a factor of N).

(b) There exist composite numbers n such that every residue a is either a Fermat liar or gcd (a; n)> 1 (in which
case, a reveals a factor of n, which is as unlikely as finding a divisor of n by trial division). For these numbers
(called absolute pseudoprimes) the Fermat primality test would usually suggest the wrong conclusion that the
number is a prime.
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The issue is fixed by the Miller�Rabin primality test, an extension of the Fermat primality test.

(c) When testing a large randomly generated number for primality. The reason is that Fermat liars are extremely
rare among large numbers.

(d) Only the following computations are necessary to reach the stated conclusion:

� a= 12: 1247� 220, 1294� 144, 12188� 1  377 is not a prime

� a= 70: 7047� 307, 7094� 376�¡1  377 is likely a prime

� a= 80: 8047� 332, 8094� 140, 80188� 373  377 is not a prime

[Note that we don't need to compute 80376. Make sure you understand why!]

� a= 233: 23347� 233, 23394� 1  377 is not a prime

The computations show that 70 is a strong liar modulo 377, and that 12; 70; 233 are Fermat liars modulo 377.

(e) Only the following computations are necessary to reach the stated conclusion:

� a= 12: 12123� 246�¡1  247 is likely a prime

� a= 17: 17123� 64  247 is not a prime

� a= 27: 27123� 170  247 is not a prime

� a= 68: 68123� 1  247 is likely a prime

The computations show that 12;68 are strong liars modulo 247, and that 12;27;68 are Fermat liars modulo 247.

Problem 2. Bob's public RSA key is N = 65, e=5.

(a) Encrypt the message m= 10 and send it to Bob.

(b) Determine Bob's secret private key d.

(c) You intercept the message c=2 from Alice to Bob. Decrypt it using the secret key.

Solution.

(a) The ciphertext is c=me (modN). Here, c� 105 (mod65)

102� 35�¡30, 104� 302� 55 (mod65). Hence, 105= 104 � 10� 55 � 10� 30 (mod65). Hence, c= 30.

(b) N =5 � 13, so that �(N)= 4 � 12= 48.

To find d, we compute e¡1 (mod48) using the extended Euclidean algorithm:

gcd (5; 48) 48 = 10 � 5 ¡ 2
= gcd (2; 5) 5 = 2 � 2 +1
= 1

Backtracking through this, we find that Bézout's identity takes the form

1= 5 ¡ 2 � 2 = 5 ¡ 2 �
¡
10 � 5 ¡ 48

�
=¡19 � 5 +2 � 48 :
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Hence, 5¡1�¡19� 29 (mod48) and, so, d= 29.

Advanced comment. Actually, as discussed in class, �(N)= (p¡ 1)(q ¡ 1)= 48 can effectively be replaced
with lcm(p¡1; q¡1)=12. That is, d=5¡1�5 (mod12) serves as private key as well (note that 29�5 (mod12)).

(c) We need to compute m= cd (modN), that is, m=229 (mod65).

22=4, 24= 16, 28� 61�¡4, 216� 16 (mod65). Hence, 229=216 � 28 � 24 � 2� 32 (mod 65), so that m= 32.

Comment. Let us check that the private key d=5 (as determined in the previous comment) can be used for
decryption with the same effect. Indeed, m=25= 32 (mod 65) as well.

Problem 3. Bob's public ElGamal key is (p; g; h)= (61; 10; 21).

(a) Encrypt the message m= 11 (�randomly� choose y= 17) and send it to Bob.

(b) Break the cryptosystem and determine Bob's secret key.

(c) Use the secret key to decrypt c=(13; 7).

Solution. We only record the final answers. Make sure the necessary computations pose no challenge to you.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

Here, c1= 1017� 59 (mod61) and c2= 2117 � 11� 29 � 11� 14 (mod 61). Hence, the ciphertext is c=(59; 14).

(b) We need to solve 10x� 21 (mod61). This yields x=5.

(Since we haven't learned a better method (no �good� method is known!), you can just try x=1; 2; 3; : : : until
you find the right one.)

(c) We decrypt m= c2c1
¡x (mod p).

Here, m=7 � 13¡5� 30 (mod 61).

Problem 4.

(a) For his public RSA key, Bob has selected N = 91. What is the smallest choice for e with e> 2?

(b) How many primitive roots are there modulo 13? Determine all of them.

(c) Find x such that 9� 7x (mod13).

(d) For his public ElGamal key, Bob has selected p= 61. How many possible choices does he have for g?

(e) Alice and Bob select p= 61 and g= 55 for a Diffie�Hellman key exchange. Alice sends 32 to Bob, and Bob
sends 54 to Alice. What is their shared secret?

(f) Determine the multiplicative orders of 2; 4; 8; 16 modulo 61. Are any of these primitive roots? How many
primitive roots are there in total?

(g) Spell out the computational Diffie�Hellman problem as well as the decisional Diffie�Hellman problem. Which
of these is more difficult?

(h) For his public RSA key, Bob needs to select p; q and e. Which of these must be chosen randomly?

(i) For his public ElGamal key, Bob needs to select p; g and x. Which of these must be chosen randomly?
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(j) When using vanilla RSA, why must we never directly encrypt messages that can be predicted (like �yes�, �no�,
�maybe�; or a social security number)?

Solution.

(a) Recall that e must be invertible modulo �(N)= 6 � 12. Hence, e=2; 3; 4 are not allowed.

Therefore, the smallest possible choice for e is e=5.

(b) Recall that the number of primitive roots modulo a prime p is �(�(p))= �(p¡ 1).

Here, there are �(12)= 4 primitive roots modulo 13.

To find a first primitive root, we try g=2 (if that doesn't work, we move on to g=3, g=4, : : :). g=2 is a
primitive root if its order is 12. Since the order must divide 12, it is enough to check that 24�/ 1 (mod13) and
26�/ 1 (mod13) [because then automatically 22�/ 1 (mod13) and 23�/ 1 (mod13)]. Indeed 24� 3 (mod13) and
26�/ ¡1 (mod13), so that g=2 is a primitive root.

Now it is easy to list all 4 primitive roots: 21; 25; 27; 211 (mod 13) (the exponents are the invertible residues
modulo 12). Explicitly computing these powers, the primitive roots are 2; 6; 7; 11 (mod13). [25� 6, 27� 11,
211� 7]

(c) Since we haven't learned a better method, we just try x=1; 2; 3; : : : until we find the right one. We find x=4.

Comment. Since 7 is a primitive root modulo 13, we know that the most general solution is x� 4 (mod 12).

(d) Since g must be a primitive root modulo p, Bob has �(�(p))= �(p¡ 1) many choices for g.

Here, Bob has �(60)= 16 choices.

(e) If Alice's secret is y and Bob's secret is x, then 55y� 32 and 55x� 54 (mod 61).

We compute 552; 553; : : : until we find either 32 or 54:

552� 36, 553� 28, 554� 15, 555� 32 (mod61).

Hence, Alice's secret is y=5. The shared secret is (55x)y� 545� 29 (mod61).

(f) The total number of primitive roots is �(�(61))= �(60)= �(4)�(3)�(5)=2 � 2 � 4= 16.

We note that the multiplicative order of elements modulo 61 must divide �(61) = 60= 22 � 3 � 5. If the order
divides 60 and is not equal to 60, then it must divide either 30, 20 or 12 (make sure you see that!). Using some
binary exponentiation, we find 230�¡1, 220�47, 212�9 modulo 61. Hence, 2 must have order 60. We conclude
that 2 is a primitive root.

Recall that if x has order n, then xr has order n/gcd (n; r). Therefore, 4= 22 has order 60/gcd (60; 2) = 30,
8=23 has order 60/gcd (60;3)=20, and 16=24 has order 60/gcd (60;4)=15. None of these are primitive roots.

Comment. The 16 primitive roots are 2; 27; 211; 213; : : : where the exponents are coprime to 60.

(g) The CDH problem is the following: given g; gx; gy (mod p), find gxy (mod p).

The DDH problem is the following: given g; gx; gy; r (mod p), decide whether r� gxy (mod p).

Obviously, DDH is simpler than the CDH problem.

(h) p and q must be chosen randomly.

(i) x must be chosen randomly.

(j) Because an attacker can make a list of likely messages (for instance, a list of all possible social security numbers)
and encrypt all of them using the public key. As soon as one of these matches the ciphertext, the attacker has
broken the message.
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Problem 5. Consider the finite field GF(24) constructed using x4+x+1.

(a) Add and multiply x2+1 and x2+x+1 in GF(24).

(b) What is the inverse of x2+x+1 in GF(24)?

(c) What is the inverse of x3+x in GF(24)?

Solution.

(a) (x2+1)+ (x2+x+1)=x in GF(24).

(x2+1) � (x2+x+1)=x3 in GF(24). This is because (x2+1) � (x2+x+1)=x4+x3+2x2+x+1, which reduces
to x4+x3+x+1 modulo 2. Further, reducing modulo x4+x+1, we are left with x3. (Here, we can just subtract
x4+x+1. In general, we would do polynomial division by x4+x+1 and take the remainder.)

(b) In general, we use the extended Euclidean algorithm and reduce modulo 2 at each step. Here, we are lucky and
are actually done after a single polynomial division:

x4+x+1 � (x2+x) � x2+x+1 +1

Hence, (x2+x+1)¡1=x2+x in GF(24).

(c) We use the extended Euclidean algorithm, and always reduce modulo 2:

x4+x+1 � x � x3+x +(x2+x+1)

x3+x � (x+1) � x2+x+1 + (x+1)

x2+x+1 � x � x+1 +1

Backtracking through this, we find that Bézout's identity takes the form

1 � x2+x+1 +x � x+1

� x2+x+1 +x �
¡
x3+x +(x+1) � x2+x+1

�
�x � x3+x +(x2+x+1) � x2+x+1

� x � x3+x +(x2+x+1) �
¡
x4+x+1 +x � x3+x

�
� (x2+x+1) � x4+x+1 +(x3+x2) � x3+x

Hence, (x3+x)¡1=x3+x2 in GF(24).

Problem 6.

(a) The design of a block cipher is almost an art, but there are two guiding principles due to Claude Shannon, the
father of information theory.

� What are these two principles? Briefly explain what they refer to.

� Which of these are the classical ciphers lacking?

(b) In a Feistel cipher, how does the encryption in one round look like?

Can any function be used in this construction?

How does decryption work?

Solution.

(a) The two principles are confusion and diffusion.
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Confusion refers to making the relationship between the ciphertext and the key as complex and involved as
possible (for instance, changing one bit of the key should change the ciphertext completely).

Diffusion refers to dissipating the statistical structure of the plaintext over the bulk of the ciphertext (for
instance, changing one bit of the plaintext should change the ciphertext completely; likewise, changing one bit
of the ciphertext should change the plaintext completely).

Diffusion is completely missing in the classical ciphers we discussed. Changing bits of the plaintext only changes
corresponding parts of the ciphertext. That's why frequency analysis can break these ciphers so easily.

(b) Let us describe one round of a Feistel cipher which takes m and produces Rk(m). Here, k is the round key.

� Split the plaintext m into two halves (L0; R0).

� Set L1=R0 and R1=L0� fk(R0).

� Then, Rk(m) is (L1; R1).

The function fk(x) is referred to as the round function. It can be any function (taking the appropriate amount
of input bits, and producing the same number of output bits).

To obtain m=(L0; R0) from Rk(m)= (L1; R1), we set R0=L1 and then compute L0=R1� fk(R0).

Problem 7.

(a) What is the block size of DES? What is the key size? How many rounds?

(b) What does each S-box do?

To store an S-box in DES as a lookup table, how many bytes are needed?

(c) How many bits are the round keys? How are they obtained?

(d) How does 3DES encryption work? What is the key?

What is the effective key size and why is it different?

(e) Why is there no 2DES?

(f) To (naively) brute-force DES, how much data must we encrypt?

Solution.

(a) The block size of DES is 64 bits. Its key size is 56 bits. It consists of 16 rounds.

(b) The S-boxes (there is eight different ones) are lookup tables. For each 6 bit input (meaning there is a total of
26 possible inputs), they specify 4 bits of output.

To store one S-box, we therefore need to list 26 � 4= 256 bits, or 32 bytes.

(c) Each round key is 48 bits. Each of these 48 bits is taken (in a prescribed manner) from one of the 56 bits of
the DES key.

(d) 3DES consists of three applications of DES

c=Ek3(Dk2(Ek1(m)))

The 3DES standard allows three keying options for the key k=(k1; k2; k3):

� k1; k2; k3 independent keys: 3� 56= 168 key size, but effective key size is 112 bit
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� k1= k3: 2� 56= 112 bit key size, effective key size is stated as 80 bit by NIST

� k1= k2= k3: this is just the usual DES, and provides backwards compatibility (which is a major reason
for making the middle step a decryption instead of another encryption).

The reason for the reduced effective key sizes is the meet-in-the-middle attack.

(e) The meet-in-the-middle attack is also the reason why 2DES does not provide significantly increased security
over DES.

(f) DES uses 56 bit keys and has a 64 bit block size.

Hence, given m and c, to make a list of all possible Ek(m) (to check for which k we have Ek(m)= c), we need
to encrypt 256 times 64 bits.

This is 256 � 8=259 byte, or 512 pebibyte (binary analog of petabyte) or 576 petabyte (since 259� 5.76 � 1017).

Problem 8.

(a) What is the block size of AES? What is the key size? How many rounds?

(b) How is it possible that AES uses fewer rounds than DES?

(c) What are the four layers that each round consists of?

(d) Which layer makes AES highly nonlinear? Describe the crucial mathematical operation involved in this layer.

(e) To store the ByteSub layer of AES as a lookup table, how many bytes are needed?

Solution.

(a) The block size of AES is 128 bits. Its key size is 128/192/256 bits. It consists of 10/12/14 rounds.

(b) Unlike DES, AES is not a Feistel network. While for a Feistel network, each round only encrypts half of the
bits, all bits are being encrypted during each round of AES. That's one indication why AES requires fewer
rounds than DES.

(c) The 4 layers are:

� ByteSub (each byte gets substituted with another byte (like a single S-box in DES); provides confusion)

� ShiftRow (the 16 bytes are permuted (like a P-box in DES but on bytes, not bits); provides diffusion)

� MixCol (each column in the 4x4 matrix is linearly transformed; provides diffusion)

� AddRoundKey (the state is xored with a 128 bit round key)

(d) The ByteSub layer is highly nonlinear (while all other layers are linear; assuming we adjust the key schedule
accordingly).

For ByteSub an input byte y is interpreted as an element of the finite field GF(28). Then y¡1 is computed
in GF(28). This is the crucial and highly nonlinear operation. (The final output of ByteSub is another linear
transformation of these 8 bits.)

(e) As the name indicates, ByteSub takes a byte and substitutes it with another byte. Since we have 28= 256
inputs, with 1 byte of output each, the corresponding lookup table is 256 bytes large.
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Problem 9. Consider a block cipher with 5 bit block size and 5 bit key size such that

Ek(b1b2b3b4b5)= (b2b5b4b3b1)� k:

(a) Encrypt m=(010101010101010 : : :)2 using k=(10001)2 and ECB mode.

(b) Encrypt m=(010101010101010 : : :)2 using k=(10001)2 and CBC mode (IV=(10011)2).

Solution. m=m1m2m3: : : with m1= 01010, m2= 10101 and m3= 01010.

(a) c1=Ek(m1)= 10100� 10001= 00101

c2=Ek(m2)= 01011� 10001= 11010

Since m3=m1, we have c3= c1. Hence, the ciphertext is c= c1c2c3: : :=(00101 11010 00101 : : :).

(b) c0= 10011

c1=Ek(m1� c0)=Ek(01010� 10011)=Ek(11001)= 11001� 10001= 01000

c2=Ek(m2� c1)=Ek(10101� 01000)=Ek(11101)= 11011� 10001= 01010

c3=Ek(m3� c2)=Ek(01010� 01010)=Ek(00000)= 00000� 10001= 10001

Hence, the ciphertext is c= c0c1c2c3: : :=(10011 01000 01010 10001 : : :).
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