Good luck!

Problem 1. ($7+\mathbf{1}$ points) Eve intercepts the ciphertext $c=(111111000)_{2}$. She knows it was encrypted with a stream cipher using the linear congruential generator $x_{n+1} \equiv 5 x_{n}+1(\bmod 8)$ as PRG.
(a) Eve also knows that the plaintext begins with $m=(0101 \ldots)_{2}$. Break the cipher and determine the plaintext.
(b) Eve was able to crack the ciphertext because the PRG is lacking a property that is crucial for cryptography. Which property is that?

Problem 2. (4 points)

(a) Suppose N is composite. x is a Fermat liar modulo N if and only if \square
(b) $7(\bmod 10)$ \square is a Fermat liar is not a Fermat liar \square
(scratch space: show your work for partial credit)

Problem 3. (6 points) Using the Chinese remainder theorem, determine all solutions to $x^{2} \equiv 4(\bmod 55)$.

Problem 4. (5 points) Evaluate $40^{16011}(\bmod 34)$.
\square
Problem 5. (2 points) Briefly outline the Fermat primality test.
\square

Problem 6. (15 points) Fill in the blanks.
(a) $2^{-1}(\bmod 29) \equiv \square$.
(b) Modulo 33, there are \square invertible residues, of which \square are quadratic.
(c) Modulo 31, there are \square invertible residues, of which \square are quadratic.
(d) 22 in base 2 is \square
(e) The residue 10 is invertible modulo n if and only if
(f) We have $\phi(m n)=\phi(m) \phi(n)$ provided that
(g) How many solutions does the congruence $x^{2} \equiv 9(\bmod 105)$ have?

How many solutions does the congruence $x^{2} \equiv 16(\bmod 105)$ have? \square
(h) Despite its flaws, in which scenario is it fine to use the Fermat primality test?

(i) The first 5 bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are \square You may use that $16^{2} \equiv 123,25^{2} \equiv 93,36^{2} \equiv 99,92^{2} \equiv 85,93^{2} \equiv 4,99^{2} \equiv 92(\bmod 133)$.
(j) Using a one-time pad and key $k=(1100)_{2}$, the message $m=(1010)_{2}$ is encrypted to \square
(k) While perfectly confidential, the one-time pad does not protect against

(l) The LFSR $x_{n+15} \equiv x_{n+14}+x_{n}(\bmod 2)$ must repeat after \square terms.
(m) Recall that, in a stream cipher, we must never reuse the key stream.

Nevertheless, we can reuse the key if we use a \square
(n) Up to x, there are roughly \square many primes.
(o) The approximate proportion of primes among numbers up to 2^{1024} is \square
(extra scratch paper)

