Midterm #1

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 40 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (7+1 points) Eve intercepts the ciphertext $c = (111 \ 111 \ 000)_2$. She knows it was encrypted with a stream cipher using the linear congruential generator $x_{n+1} \equiv 5x_n + 1 \pmod{8}$ as PRG.

- (a) Eve also knows that the plaintext begins with $m = (010 \ 1...)_2$. Break the cipher and determine the plaintext.
- (b) Eve was able to crack the ciphertext because the PRG is lacking a property that is crucial for cryptography. Which property is that?

Solution.

(a) Since $c = m \oplus PRG$, we learn that the initial piece of the keystream is $PRG = c \oplus m = (111\ 111\ 000)_2 \oplus (010\ 1...)_2 = (101\ 0...)_2$.

Since each x_n has 3 bits, we learn that $x_1 = (101)_2 = 5$. Using $x_{n+1} \equiv 5x_n + 1 \pmod{8}$, we find $x_2 = 2$, $x_3 = 3$, ... In other words, PRG = 5, 2, 3, ... = (101 010 011 ...)_2.

Hence, Eve can decrypt the ciphertext and obtain $m = c \oplus PRG = (111\ 111\ 000)_2 \oplus (101\ 010\ 011)_2 = (010\ 101\ 011)_2$.

(b) Unpredictability.

Problem 2. (4 points)

(a) Suppose N is composite. x is a Fermat liar modulo N if and only if

(b) $7 \pmod{10}$ is a Fermat liar because is not a Fermat liar because

Solution.

- (a) x is a Fermat liar modulo N if and only if $x^{N-1} \equiv 1 \pmod{N}$.
- (b) 7 is a Fermat liar modulo 10 if and only if $7^9 \equiv 1 \pmod{10}$.

 $7^2 \equiv -1 \pmod{10}$, so that $7^8 \equiv 1 \pmod{10}$ and $7^9 \equiv 7 \pmod{10}$. Hence, 7 is not a Fermat liar modulo 10.

Problem 3. (6 points) Using the Chinese remainder theorem, determine all solutions to $x^2 \equiv 4 \pmod{55}$.

Solution. By the CRT:

 $\begin{array}{l} x^2 \equiv 4 \pmod{55} \\ \iff x^2 \equiv 4 \pmod{5} \text{ and } x^2 \equiv 4 \pmod{11} \\ \iff x \equiv \pm 2 \pmod{5} \text{ and } x \equiv \pm 2 \pmod{11} \end{array}$

Hence, there are four solutions $\pm 2, \pm a$ modulo 55. To find one of the nontrivial ones, we solve the congruences $x \equiv 2 \pmod{5}, x \equiv -2 \pmod{11}$:

$$x \equiv 2 \cdot 11 \cdot \underbrace{11_{\text{mod}5}^{-1}}_{1} - 2 \cdot 5 \cdot \underbrace{5_{\text{mod}11}^{-1}}_{-2} \equiv 22 + 20 \equiv -13 \pmod{55}$$

Hence, we conclude that $x^2 \equiv 4 \pmod{55}$ has the four solutions $\pm 2, \pm 13 \pmod{55}$.

Problem 4. (5 points) Evaluate $40^{16011} \pmod{34}$.

Show your work!

Solution. First, $40^{16011} \equiv 6^{16011} \pmod{34}$. Since $\phi(34) = \phi(2)\phi(17) = 16$, we have $16011 \equiv 11 \pmod{\phi(34)}$. Combined, we have $40^{16011} \equiv 6^{11} \pmod{34}$.

Using binary exponentiation, we find $6^2 \equiv 2 \pmod{34}$, $6^4 \equiv 2^2 = 4 \pmod{34}$, $6^8 \equiv 4^2 \equiv 16 \pmod{34}$.

In conclusion, $40^{16011} \equiv 6^{11} = 6^8 \cdot 6^2 \cdot 6 \equiv \underbrace{16 \cdot 2}_{\equiv -2} \cdot 6 \equiv -12 \equiv 22 \pmod{34}$.

Problem 5. (2 points) Briefly outline the Fermat primality test.

Solution. Fermat primality test:

Input: number n and parameter k indicating the number of tests to run *Output:* "not prime" or "possibly prime" *Algorithm:*

Repeat k times: Pick a random number a from $\{2, 3, ..., n-2\}$. If $a^{n-1} \not\equiv 1 \pmod{n}$, then stop and output "not prime". Output "possibly prime". Problem 6. (15 points) Fill in the blanks.

(a)	$2^{-1} \pmod{29} \equiv .$
(b)	Modulo 33, there are invertible residues, of which are quadratic.
(c)	Modulo 31, there are invertible residues, of which are quadratic.
(d)	22 in base 2 is
(e)	The residue 10 is invertible modulo n if and only if
(f)	We have $\phi(mn) = \phi(m)\phi(n)$ provided that
(g)	How many solutions does the congruence $x^2 \equiv 9 \pmod{105}$ have?
	How many solutions does the congruence $x^2 \equiv 16 \pmod{105}$ have?
(h)	Despite its flaws, in which scenario is it fine to use the Fermat primality test?
(i)	The first 5 bits generated by the Blum-Blum-Shub PRG with $M = 133$ using the seed 5 are
	You may use that $16^2 \equiv 123$, $25^2 \equiv 93$, $36^2 \equiv 99$, $92^2 \equiv 85$, $93^2 \equiv 4$, $99^2 \equiv 92 \pmod{133}$.
(j)	Using a one-time pad and key $k = (1100)_2$, the message $m = (1010)_2$ is encrypted to
(k)	While perfectly confidential, the one-time pad does not protect against
(l)	The LFSR $x_{n+15} \equiv x_{n+14} + x_n \pmod{2}$ must repeat after terms.
(m)	Recall that, in a stream cipher, we must never reuse the key stream.
	Nevertheless, we can reuse the key if we use a

(n) Up to x, there are roughly

many primes.

(o) The approximate proportion of primes among numbers up to 2^{1024} is

(Simplify!)

Solution.

- (a) $2^{-1} \pmod{29} \equiv 15$.
- (b) Modulo 33, there are $\phi(33) = \phi(3)\phi(11) = 20$ invertible residues, of which $\frac{1}{4}\phi(33) = 5$ are quadratic.
- (c) Modulo the prime 31, there are $\phi(31) = 30$ invertible residues, of which $\frac{1}{2}\phi(31) = 15$ are quadratic.
- (d) 22 in base 2 is $(10110)_2$.
- (e) The residue 10 is invertible modulo n if and only if gcd(10, n) = 1.

(In other words, 10 is invertible modulo n if and only if n is not a multiple of 2 or 5.)

- (f) We have $\phi(mn) = \phi(m)\phi(n)$ provided that gcd(m, n) = 1.
- (g) By the CRT, since $105 = 3 \cdot 5 \cdot 7$, the second congruence has $2 \cdot 2 \cdot 2 = 8$ solutions. The first congruence only has $1 \cdot 2 \cdot 2 = 4$ solutions because $x^2 \equiv 9 \pmod{3}$ only has one solution (namely, $x \equiv 0$).
- (h) Despite its flaws, it is fine to use the Fermat primality test for large random numbers.
- (i) The first five bits generated by the Blum-Blum-Shub PRG with M = 133 using the seed 5 are 1, 1, 0, 0, 1 (obtained from 25, 93, 4, 16, 123).
- (j) Using a one-time pad and key $k = (1100)_2$, the message $m = (1010)_2$ is encrypted to $(0110)_2$.
- (k) While perfectly confidential, the one-time pad does not protect against tampering.
- (1) The LFSR $x_{n+15} \equiv x_{n+14} + x_n \pmod{2}$ must repeat after $2^{15} 1$ terms.
- (m) We can reuse the key if we use a nonce.
- (n) Up to x, there are roughly $x/\ln(x)$ many primes.
- (o) By the prime number theorem, there are roughly $2^{1024}/\ln(2^{1024})$ primes up to 2^{1024} . Hence, the proportion of primes among numbers up to 2^{1024} is roughly $\frac{2^{1024}/\ln(2^{1024})}{2^{1024}} = \frac{1}{\ln(2^{1024})} = \frac{1}{1024 \cdot \ln(2)}$.

Comment. $\frac{1}{1024 \cdot \ln(2)} \approx \frac{1}{709.8}$. This means that, roughly, 1 in 710 numbers with 1024 bits is a prime.

(extra scratch paper)