No notes, calculators or tools of any kind are permitted. There are 40 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. ($7+\mathbf{1}$ points) Eve intercepts the ciphertext $c=(111111000)_{2}$. She knows it was encrypted with a stream cipher using the linear congruential generator $x_{n+1} \equiv 5 x_{n}+1(\bmod 8)$ as PRG.
(a) Eve also knows that the plaintext begins with $m=(0101 \ldots)_{2}$. Break the cipher and determine the plaintext.
(b) Eve was able to crack the ciphertext because the PRG is lacking a property that is crucial for cryptography. Which property is that?

Solution.

(a) Since $c=m \oplus \mathrm{PRG}$, we learn that the initial piece of the keystream is $\mathrm{PRG}=c \oplus m=(111111000)_{2} \oplus$ $(0101 \ldots)_{2}=(1010 \ldots)_{2}$.

Since each x_{n} has 3 bits, we learn that $x_{1}=(101)_{2}=5$. Using $x_{n+1} \equiv 5 x_{n}+1(\bmod 8)$, we find $x_{2}=2, x_{3}=3$, \ldots In other words, $\mathrm{PRG}=5,2,3, \ldots=(101010011 \ldots)_{2}$.

Hence, Eve can decrypt the ciphertext and obtain $m=c \oplus P R G=(111111000)_{2} \oplus(101010011)_{2}=$ $(010101011)_{2}$.
(b) Unpredictability.

Problem 2. (4 points)

(a) Suppose N is composite. x is a Fermat liar modulo N if and only if \square
(b) $7(\bmod 10)$ \square is a Fermat liar is not a Fermat liar because \square

Solution.

(a) x is a Fermat liar modulo N if and only if $x^{N-1} \equiv 1(\bmod N)$.
(b) 7 is a Fermat liar modulo 10 if and only if $7^{9} \equiv 1(\bmod 10)$.
$7^{2} \equiv-1(\bmod 10)$, so that $7^{8} \equiv 1(\bmod 10)$ and $7^{9} \equiv 7(\bmod 10)$. Hence, 7 is not a Fermat liar modulo 10.

Problem 3. (6 points) Using the Chinese remainder theorem, determine all solutions to $x^{2} \equiv 4(\bmod 55)$.

Solution. By the CRT:

$$
\begin{aligned}
& x^{2} \equiv 4(\bmod 55) \\
\Longleftrightarrow & x^{2} \equiv 4(\bmod 5) \text { and } x^{2} \equiv 4(\bmod 11) \\
\Longleftrightarrow & x \equiv \pm 2(\bmod 5) \text { and } x \equiv \pm 2(\bmod 11)
\end{aligned}
$$

Hence, there are four solutions $\pm 2, \pm a$ modulo 55 . To find one of the nontrivial ones, we solve the congruences $x \equiv 2(\bmod 5), x \equiv-2(\bmod 11):$

$$
x \equiv 2 \cdot 11 \cdot \underbrace{11_{\bmod 5}^{-1}}_{1}-2 \cdot 5 \cdot \underbrace{5_{\bmod 11}^{-1}}_{-2} \equiv 22+20 \equiv-13(\bmod 55)
$$

Hence, we conclude that $x^{2} \equiv 4(\bmod 55)$ has the four solutions $\pm 2, \pm 13(\bmod 55)$.

Problem 4. (5 points) Evaluate $40^{16011}(\bmod 34)$.

Solution. First, $40^{16011} \equiv 6^{16011}(\bmod 34)$. Since $\phi(34)=\phi(2) \phi(17)=16$, we have $16011 \equiv 11(\bmod \phi(34))$. Combined, we have $40^{16011} \equiv 6^{11}(\bmod 34)$.

Using binary exponentiation, we find $6^{2} \equiv 2(\bmod 34), 6^{4} \equiv 2^{2}=4(\bmod 34), 6^{8} \equiv 4^{2} \equiv 16(\bmod 34)$.
In conclusion, $40^{16011} \equiv 6^{11}=6^{8} \cdot 6^{2} \cdot 6 \equiv \underbrace{16 \cdot 2}_{\equiv-2} \cdot 6 \equiv-12 \equiv 22(\bmod 34)$.

Problem 5. (2 points) Briefly outline the Fermat primality test.

Solution. Fermat primality test:

Input: number n and parameter k indicating the number of tests to run
Output: "not prime" or "possibly prime"
Algorithm:
Repeat k times:
Pick a random number a from $\{2,3, \ldots, n-2\}$.
If $a^{n-1} \not \equiv 1(\bmod n)$, then stop and output "not prime".
Output "possibly prime".

Problem 6. (15 points) Fill in the blanks.
(a) $2^{-1}(\bmod 29) \equiv \square$.
(b) Modulo 33, there are \square invertible residues, of which \square are quadratic.
(c) Modulo 31, there are \square invertible residues, of which \square are quadratic.
(d) 22 in base 2 is \square
(e) The residue 10 is invertible modulo n if and only if \square
(f) We have $\phi(m n)=\phi(m) \phi(n)$ provided that \square
(g) How many solutions does the congruence $x^{2} \equiv 9(\bmod 105)$ have? \square
How many solutions does the congruence $x^{2} \equiv 16(\bmod 105)$ have? \square
(h) Despite its flaws, in which scenario is it fine to use the Fermat primality test?
\square
(i) The first 5 bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are You may use that $16^{2} \equiv 123,25^{2} \equiv 93,36^{2} \equiv 99,92^{2} \equiv 85,93^{2} \equiv 4,99^{2} \equiv 92(\bmod 133)$.
(j) Using a one-time pad and key $k=(1100)_{2}$, the message $m=(1010)_{2}$ is encrypted to \square
(k) While perfectly confidential, the one-time pad does not protect against \square
(l) The LFSR $x_{n+15} \equiv x_{n+14}+x_{n}(\bmod 2)$ must repeat after \square
(m) Recall that, in a stream cipher, we must never reuse the key stream.

Nevertheless, we can reuse the key if we use a \square
(n) Up to x, there are roughly \square many primes.
(o) The approximate proportion of primes among numbers up to 2^{1024} is \square (Simplify!)

Solution.

(a) $2^{-1}(\bmod 29) \equiv 15$.
(b) Modulo 33, there are $\phi(33)=\phi(3) \phi(11)=20$ invertible residues, of which $\frac{1}{4} \phi(33)=5$ are quadratic.
(c) Modulo the prime 31, there are $\phi(31)=30$ invertible residues, of which $\frac{1}{2} \phi(31)=15$ are quadratic.
(d) 22 in base 2 is $(10110)_{2}$.
(e) The residue 10 is invertible modulo n if and only if $\operatorname{gcd}(10, n)=1$.
(In other words, 10 is invertible modulo n if and only if n is not a multiple of 2 or 5 .)
(f) We have $\phi(m n)=\phi(m) \phi(n)$ provided that $\operatorname{gcd}(m, n)=1$.
(g) By the CRT, since $105=3 \cdot 5 \cdot 7$, the second congruence has $2 \cdot 2 \cdot 2=8$ solutions.

The first congruence only has $1 \cdot 2 \cdot 2=4$ solutions because $x^{2} \equiv 9(\bmod 3)$ only has one solution $($ namely,$x \equiv 0)$.
(h) Despite its flaws, it is fine to use the Fermat primality test for large random numbers.
(i) The first five bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are $1,1,0,0,1$ (obtained from $25,93,4,16,123)$.
(j) Using a one-time pad and key $k=(1100)_{2}$, the message $m=(1010)_{2}$ is encrypted to $(0110)_{2}$.
(k) While perfectly confidential, the one-time pad does not protect against tampering.
(l) The LFSR $x_{n+15} \equiv x_{n+14}+x_{n}(\bmod 2)$ must repeat after $2^{15}-1$ terms.
(m) We can reuse the key if we use a nonce.
(n) Up to x, there are roughly $x / \ln (x)$ many primes.
(o) By the prime number theorem, there are roughly $2^{1024} / \ln \left(2^{1024}\right)$ primes up to 2^{1024}. Hence, the proportion of primes among numbers up to 2^{1024} is roughly $\frac{2^{1024} / \ln \left(2^{1024}\right)}{2^{1024}}=\frac{1}{\ln \left(2^{1024}\right)}=\frac{1}{1024 \cdot \ln (2)}$.

Comment. $\frac{1}{1024 \cdot \ln (2)} \approx \frac{1}{709.8}$. This means that, roughly, 1 in 710 numbers with 1024 bits is a prime.
(extra scratch paper)

