
Preparing for Midterm #1 MATH 481/581 � Cryptography
Midterm: Friday, Feb 16, 2024

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1. Do the practice problems that were compiled from the examples from lectures. (Solutions to these can
be found in the corresponding lecture sketches.) In particular, fill in all the conceptual empty boxes. To save time,
you don't need to work through all details. However, make sure that you know how to do each problem.

Problem 2. Eve intercepts the ciphertext c= (1111 1011 0000)2 from Alice to Bob. She knows that the plaintext
begins with m=(1100 0: : :)2.

(a) Eve suspects that a stream cipher with PRG xn+1� 5xn+1 (mod 16) was used for encryption. If that is the
case, break the cipher and determine the plaintext. What is your verdict on Eve's suspicion?

(b) On second thought, Eve thinks a stream cipher using a LFSR with xn+3�xn+2+xn (mod2) was used. If that
is the case, what would be the plaintext?

(c) If a nonce was used, how would that affect Eve's attack?

(d) What should Alice learn from this? (Obviously, apart from the fact that the key space is too small.)

Solution.

(a) Since c=m�PRG, we learn that the initial piece of the keystream is PRG=m�c=(1100 0:::)2� (1111 1:::)2=
(0011 1: : :)2.

Since each xn has 4 bits, we learn that x1=(0011)2=3. Using xn+1� 5xn+1 (mod16), we find x2=0, x3=1,
: : : In other words, PRG=3; 0; 1; : : : =(0011 0000 0001 : : :)2.

Hence, the plaintext would be m= c�PRG=(1111 1011 0000)2� (0011 0000 0001)2=(1100 1011 0001)2.

However, note that the 5th bit does not agree with Eve's knowledge about m. This means that the message
could not have been encrypted using this particular stream cipher.

(b) Again, the initial piece of the keystream is PRG=m� c=(1100 0: : :)2� (1111 1: : :)2=(0011 1: : :)2.

Now, each xn is a single bit, and we have x1= 0, x2=0, x3= 1. The given LFSR produces x4= x3+ x1=1,
x5=x4+x2=1, x6=0, x7=1, and so on. Continuing, we obtain PRG=x1x2: : :=(0011 1010 0111)2.

Hence, the plaintext would be m= c�PRG=(1111 1011 0000)2� (0011 1010 0111)2=(1100 0001 0111)2.

(c) Whether or not a nonce was used has absolutely no effect on Eve's attack.

(Recall that the nonce is combined with the key in order that a different seed is used each time the stream
cipher is used to encrypt a message.)

(d) Alice should learn that, when using a stream cipher, we need a PRG which is unpredictable. Linear congruential
generators and LFSRs, by themselves, are completely predictable: knowing a few terms, one can predict (even
with certainty), as we did in the first two parts, all future (even past) terms.

Armin Straub
straub@southalabama.edu

1



For instance, Alice could use the Blum-Blum-Shub PRG, which is believed to be unpredictable. (However, let
us note that B-B-S is usually considered too slow for practical applications.)

Problem 3.

(a) Evaluate 8506677 (mod77).

(b) Evaluate 1007300 (mod91).

(c) Determine all solutions to x2� 9 (mod91).

Solution.

(a) Obviously, 8506677� 36677 (mod77). We note that gcd (3; 77)= 1, so that we may apply Euler's theorem.

Since �(77)= �(7)�(11)= 6 � 10= 60, we conclude that 36677� 317 (mod77).

Using binary exponentiation, 32=9, 34� 4, 38� 16, 316� 25.

Hence, 317=316 � 31� 25 � 3� 75 (mod 77). In summary, 8506677� 75 (mod77).

(b) Obviously, 1007300� 97300 (mod91). We note that gcd (9; 91)= 1, so that we may apply Euler's theorem.

Since �(91)= �(7)�(13)= 6 � 12= 72, we conclude that 97300� 928 (mod91).

Using binary exponentiation, 92�¡10, 94� (¡10)2� 9, 98�¡10, 916� 9.

Hence, 928=916 � 98 � 94� 9 � (¡10) � 9� 9 (mod91). In summary, 1007300� 9 (mod91).

Comment. Actually, to save time, we should have paused when we found 94�9 (mod91). Since 9 is invertible
modulo 91, this means that 93� 1 (mod 91). This means that we can reduce the exponent in 928 (mod 91)
modulo 3. Since 28� 1 (mod 3), we can conclude that 928� 91=9 (mod91).

(c) By the CRT,

x2� 9 (mod 91) () x2� 9 (mod 7)
x2� 9 (mod 13) () x��3 (mod 7)

x��3 (mod13):

In particular, there are four solutions to x2� 9 (mod 91). Two of these are obvious: x��3 (mod 91). To find
the other two, we apply the CRT to solve x� 3 (mod 7) and x�¡3 (mod13). This produces

x� 3 � 13 � 13mod7
¡1

¡1

¡ 3 � 7 � 7mod13
¡1

2

=¡39¡ 42� 10 (mod91):

Hence, we conclude that the solutions to x2� 9 (mod91) are �3, �10.

Problem 4.

(a) Using the Chinese remainder theorem, solve x� 3 (mod 4), x� 1 (mod 7), x� 2 (mod11).

(b) Using the Chinese remainder theorem, find all solutions to x3� 1 (mod70).

Armin Straub
straub@southalabama.edu

2



(c) Determine the number of solutions to x3� 1 (mod 182).

If you wish additional practice using the CRT, find all (or just a select few) solutions.

Solution.

(a) x� 3 � 7 � 11 � (7 � 11)mod4
¡1

1

+1 � 4 � 11 � (4 � 11)mod7
¡1

4

+2 � 4 � 7 � (4 � 7)mod11
¡1

2

= 231+ 176+ 112� 211 (mod308)

(b) By the CRT:

x3� 1 (mod70) ()
x3� 1 (mod 2)
x3� 1 (mod 5)
x3� 1 (mod 7)

()
x� 1 (mod 2)
x� 1 (mod 5)

x� 1; 2; 4 (mod 7)

Here, for the last equivalence, we just go through all residues (there's only 1;4 and 6 many invertible residues in
each case) to find the possible values for x. Note that, in the end, there is 1 �1 �3=3 possible combinations for x.

Using the CRT, we then construct the corresponding values modulo 70:

x� 1 (mod 2); x� 1 (mod 5); x� 1 (mod 7) () x� 1 (mod70)
x� 1 (mod 2); x� 1 (mod 5); x� 2 (mod 7) () x � 1 � 5 � 7 � (5 � 7)mod2

¡1

1

+ 1 � 2 � 7 � (2 � 7)mod5
¡1

¡1

+ 2 � 2 � 5 �

(2 � 5)mod7
¡1

¡2

= 35¡ 14¡ 40� 51 (mod 70)

x� 1 (mod 2); x� 1 (mod 5); x� 4 (mod 7) () x � 1 � 5 � 7 � (5 � 7)mod2
¡1

1

+ 1 � 2 � 7 � (2 � 7)mod5
¡1

¡1

+ 4 � 2 � 5 �

(2 � 5)mod7
¡1

¡2

= 35¡ 14¡ 80� 11 (mod 70)

Hence, we conclude that x3� 1 (mod70) has the three solutions 1; 11; 51 (mod70).

(c) Note that 182=2 � 7 � 13. As in the previous part, by the CRT:

x3� 1 (mod 182) ()
x3� 1 (mod 2)
x3� 1 (mod 7)
x3� 1 (mod13)

()
x� 1 (mod 2)

x� 1; 2; 4 (mod 7)
x� 1; 3; 9 (mod 13)

Again, since there is only 12 invertible residues modulo 13 we just checked all of them, and found that 1; 3; 9
are the only ones satisfying x3�1 (mod13). (Of course, if we have to do more such problems, we should spend
a little extra time thinking about better ways. The comment below might give you one idea for optimization.)

In the end, there is 1 � 3 � 3 = 9 possible combinations for x modulo 182. In other words, there are exactly 9
solutions to x3� 1 (mod182).

As in the previous part, you can work out all nine solutions using the CRT. The solutions are 1; 9; 29; 53; 79;
81; 107; 113; 165 (mod182).

Comment. By the way, it is no coincidence that the solutions modulo 7 and 13 are of the form 1; a; a2. This
follows from a3¡ 1= (a¡ 1)(1+ a+ a2). Can you see how?

Armin Straub
straub@southalabama.edu

3



Problem 5.

(a) When using a stream cipher, why must we not use the same keystream a second time?

(b) Explain how a nonce makes it possible to use the same key in a stream cipher multiple times.

(c) During a conversation you hear the statement that �the one-time pad is perfectly secure�. What is your reaction?

(d) Your company is implementing measures for secure internal communication. As part of that, a random secret
key is to be generated for each employee. A colleague says: �That's easy, let me do it! Java has a built-in class
called Random. It shouldn't be more than a few lines of code.� What is your reaction?

(e) We observed that many programming languages use linear congruential generators when producing pseudo-
random numbers. If these are predictable, why are they still used?

Solution.

(a) In short, using the same keystream twice is the same as using a one-time pad twice. As indicated by the name,
this is a terrible sin.

In more detail, recall that a message m is encrypted as c=m�KEYSTREAM. Using the same keystream
twice, we can combine the ciphertexts c1=m1�KEYSTREAM and c2=m2�KEYSTREAM to obtain

c1� c2=(m1�KEYSTREAM)� (m2�KEYSTREAM)=m1�m2:

This is information about the plaintexts! (In fact, if the plaintexts are text encoded in ASCII this is usually
enough to obtain both m1 and m2 from m1�m2.)

(b) Without a nonce, we use the key as the seed for the PRG. This means that the same key with result in the
same keystream. As discussed in the previous item, we therefore cannot use the same key twice.

The idea of a nonce is to combine it with the key when determining the seed for the PRG (for instance, nonce
and key could be simply concatenated). Hence, as long as we change the nonce, we can keep the same key, but
will have a different seed each time, which results in a different keystream. The nonce is not kept secret but
instead passed along with the ciphertext (so that the person on the other end, who already knows the secret
key, now can also compute the seed and the resulting keystream).

(c) The statement is too bold, and it only focuses on one aspect of security. The one-time pad provides perfect
confidentiality, but it is not secure against tampering.

(d) You should stop your colleague! The typical random number generators built into programming languages are
not meant for cryptographic applications. They are often slight variations of linear congruential generators or
LFSRs. These are terribly predictable. As a result, if Eve gains information on the secret key of one or several
employees, she might be able to predict other secret keys. A malicious employee could even try to extrapolate
from the secret key he already has.

Comment. In fact, Java also provides a class SecureRandom, which might fit your bill. However, you should look into how that
is implemented on your platform and whether any security concerns have been raised since then.
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom

(e) Because they are fast. It helps that they are very simple to implement, too. Also, we need to be mindful of
the vastly different applications for pseudorandom numbers. For instance, casual computer games will need
random numbers, in which case our cryptographic concerns do not apply. In fact, the (insecure) simple PRGs
often do have very pleasant statistical properties and �look� nice and random from that point of view.

One could argue that one could certainly aim at finding something that's almost as fast and �more� secure than
the typical standard implementations. However, that might be even more dangerous because it could lull some
people into using them for crypto when they still are not secure enough.

Armin Straub
straub@southalabama.edu

4

http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom


One needs to be aware of the requirements.

Problem 6.

(a) If you can only do a single modular computation, how would you check whether a huge randomly selected
number N is prime or not?

(b) Which flaw of the Fermat primality test renders it unsuitable as a general primality test?

(c) Despite the flaw in the previous item, in which scenario is it fine to use the Fermat primality test regardless?

(d) Determine all Fermat liars modulo 15.

Solution.

(a) Compute 2N¡1 (modN) (using binary exponentiation). If this is 2N¡1�/ 1 (modN), then N is not a prime.
[There's nothing special about 2, by the way.]

Otherwise, N is a prime or 2 is a Fermat liar modulo N (but the latter is exceedingly unlikely for a huge
randomly selected number N ; a bonus challenge from class indicates that this is almost as unlikely as randomly
running into a factor of N).

(b) There exist composite numbers n such that every residue a is either a Fermat liar or gcd (a; n)> 1 (in which
case, a reveals a factor of n, which is as unlikely as finding a divisor of n by trial division). For these numbers
(called absolute pseudoprimes) the Fermat primality test would usually suggest the wrong conclusion that the
number is a prime.

(c) When testing a large randomly generated number for primality. The reason is that Fermat liars are extremely
rare among large numbers.

(d) Recall that x is a Fermat liar modulo 15 if and only if x14� 1 (mod15).

Since a Fermat liar is necessarily invertible (x14� 1 implies that x¡1� x13), the only candidates are x��1;
�2;�4;�7. Of course, �1 are trivial Fermat liars because (�1)14� 1 (mod15).

We compute (do binary exponentiation and show all the details!) that (�2)14� 4 (mod 15), (�4)14� 42�
1 (mod 15) and (�7)14� 4 (mod15).

We conclude that the only Fermat liars modulo 15 are �1 and �4.

Comment. This means that 50% of the invertible residues are Fermat liars. One can prove that, apart from
absolute pseudoprimes (where 100% of the invertible residues are Fermat liars), this is the worst possible case.

[In fact, if you know a bit of abstract algebra, this is not hard to prove: the set of Fermat liars is easily verified
to be a subgroup of the invertible residues. As such, its order (which is the number of Fermat liars) must divide
the number of invertible residues. Therefore, the number of Fermat liars is at most 1/2 times the number of
invertible residues�unless all invertible residues are Fermat liars.]

Problem 7.

(a) Express 123 in base 2 (and then in base 7).

(b) Predict the number of solutions to x2� 4 (mod 1001).

(c) After how many terms must the LFSR xn+7�xn+3+xn (mod 2) repeat?

(d) State the prime number theorem.

(e) What is the approximate proportion of primes among numbers up to 21024? Simplify your estimate!

Armin Straub
straub@southalabama.edu

5



Solution.

(a) 123=(1111011)2=(234)7.

(b) Observe that 1001= 7 � 11 � 13. (Of course, you are not expected to factor numbers of this size on the exam
without calculators.)

By the CRT:

x2� 4 (mod1001) ()
x2� 4 (mod 7)
x2� 4 (mod11)
x2� 4 (mod13)

()
x��2 (mod 7)
x��2 (mod 11)
x��2 (mod 13)

Again, using the CRT, we can combine each of these 23=8 possibilities for x to a solution modulo 1001. In
particular, there are 8 different solutions to x2� 4 (mod 1001).

(c) The LFSR computes the next value xn+7 from the past 7 values (xn; xn+1; : : : ; xn+6). Hence, it has 27= 128
many states. Since the state (0; 0; 0; 0; 0; 0; 0) remains zero forever, 127 states remain. This means that the
generated sequence must be periodic, with period at most 127.

Indeed, for any initial condition (except the one where everything is 0), the period is 127.

(d) Up to x, there are roughly x/ ln(x) many primes.

Comment. More precisely, if �(x) is the number of primes 6 x, then lim
x!1

�(x)
x/ln(x)

= 1.

(e) By the prime number theorem, there are roughly 21024/ln(21024) primes up to 21024. Hence, the proportion of

primes among numbers up to 21024 is roughly 21024/ln(21024)
21024

= 1

ln(21024) =
1

1024 � ln(2) .

Comment. 1

1024 � ln(2) �
1

709.8 . This means that, roughly, 1 in 710 numbers with 1024 bits is a prime.

Armin Straub
straub@southalabama.edu

6


