
Sketch of Lecture 1 Mon, 1/8/2024

Review: The calculus of congruences

Example 1. Today is Monday. What day of the week will it be a year (366 days!) from now?
Solution. Since 366� 2 (mod7), it will be Wednesday on 1/8/2025.

a� b (modn) means a= b+mn (for some m2Z)

In that case, we say that �a is congruent to b modulo n�.

In other words: a� b (modn) if and only if a¡ b is divisible by n.

Example 2. 17� 5 (mod12) as well as 17� 29�¡7 (mod12)
We say that 5; 17; 29;¡7 all represent the same residue modulo 12.
There are exactly 12 different residues modulo 12.

Example 3. Every integer x is congruent to one of 0; 1; 2; 3; 4; :::; 11 modulo 12.
We therefore say that 0; 1; 2; 3; 4; :::; 11 form a complete set of residues modulo 12.
Another natural complete set of residues modulo 12 is: 0;�1;�2; :::;�5; 6
[¡6 is not included because ¡6� 6 modulo 12.]

Online homework. When entering solutions modulo n for online homework, your answer needs to be from one
of the two natural sets of residues above.

Example 4. Modulo 7, we have the complete sets of residues 0;1;2;3; 4;5;6 and 0;�1;�2;�3.
A less obvious set is 0; 3; 32; 33; 34; 35; 36.
Review. Note that 36 � 1 (mod 7) by Fermat's little theorem. Because 6 is the smallest positive exponent
such that 3k � 1 (mod 7), we say that the multiplicative order of 3 (mod 7) is 6. This makes 3 (mod 7) a
primitive root.
On the other hand, the multiplicative order of 2 (mod7) is 3. (Why?!)

Example 5. 67 � 24� 4 � 3� 5 (mod 7)
The point being that we can (and should!) reduce the factors individually first (to avoid the large number we would
get when actually computing 67 � 24 first). This idea is crucial in the computations we (better, our computers)
will later do for cryptography.

Example 6. (but careful!) If a� b (modn), then ac� bc (modn) for all integers c.
However, the converse is not true! We can have ac� bc (modn) without a� b (modn) (even
assuming that c�/ 0).
For instance. 2 � 4� 2 � 1 (mod6) but 4�/ 1 (mod6)
However. 2 � 4� 2 � 1 (mod6) means 2 � 4=2 � 1+6m. Hence, 4=1+3m, or, 4� 1 (mod3).
The issue is that 2 is not invertible modulo 6.

a is invertible modulo n () gcd (a; n)= 1

Similarly, ab� 0 (modn) does not always imply that a� 0 (modn) or b� 0 (modn).
For instance. 4 � 15� 0 (mod6) but 4�/ 0 (mod6) and 15�/ 0 (mod6)

Armin Straub
straub@southalabama.edu

1

Good news. These issues do not occur when n is a prime p.
� If ab� 0 (mod p), then a� 0 (mod p) or b� 0 (mod p).

� Suppose c�/ 0 (mod p). If ac� bc (mod p), then a� b (mod p).

Example 7. Determine 4¡1 (mod 13).
Recall. This is asking for the modular inverse of 4 modulo 13. That is, a residue x such that 4x�1 (mod13).
Brute force solution. We can try the values 0; 1; 2; 3; :::; 12 and find that x= 10 is the only solution modulo
13 (because 4 � 10� 1 (mod13)).
This approach may be fine for small examples when working by hand, but is not practical for serious congruences.
On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely efficiently.
Glancing. In this special case, we can actually see the solution if we notice that 4 � 3 = 12, so that 4 � 3 �
¡1 (mod13) and therefore 4¡1�¡3 (mod13).

Example 8. Solve 4x� 5 (mod13).
Solution. From the previous problem, we know that 4¡1�¡3 (mod13).
Hence, x� 4¡1 � 5�¡3 � 5=¡2 (mod13).

(Bézout's identity) Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd (a; b)= ax+ by:

The integers x; y can be found using the extended Euclidean algorithm.

In particular, if gcd (a; b)=1, then a¡1�x (mod b) (as well as b¡1� y (mod a)).

Here, Z denotes the set of all integers 0;�1;�2; :::

Example 9. Find d= gcd (17; 23) as well as integers r; s such that d= 17r+ 23s.
Solution. We apply the extended Euclidean algorithm:

gcd (17; 23) 23 =1 � 17 +6 or: A 6=1 � 23 ¡ 1 � 17
= gcd(6; 17) 17 =3 � 6 ¡ 1 B 1=¡1 � 17 +3 � 6
= 1

Backtracking through this, we find that:

1 = ¡1 � 17 +3 � 6 = ¡4 � 17 +3 � 23
B A

That is, Bézout's identity takes the form 1=¡4 � 17+3 � 23.
Comment. Note how our second step was 17 =3 � 6 ¡ 1 rather than 17 =2 � 6 +5. The latter works as
well but requires a third step (do it!). In general, we save time by allowing negative remainders if they are smaller
in absolute value.

Example 10. Determine 17¡1 (mod23).
Solution. By the previous example, 1 =¡4 � 17+ 3 � 23. Reducing modulo 23, we get ¡4 � 17� 1 (mod23).
Hence, 17¡1�¡4 (mod23). [Or, if preferred, 17¡1� 19 (mod23).]

Armin Straub
straub@southalabama.edu

2

Sketch of Lecture 2 Wed, 1/10/2024

Example 11. Determine 16¡1 (mod25).
Solution. We apply the extended Euclidean algorithm:

gcd (16; 25) 25 =2 � 16 ¡ 7 or: A 7=¡1 � 25 +2 � 16
= gcd(7; 16) 16 =2 � 7 +2 B 2=1 � 16 ¡ 2 � 7
= gcd(2; 7) 7 = 3 � 2 +1 C 1= 7 ¡ 3 � 2
= 1

Backtracking through this, we find that:

1 = 7 ¡ 3 � 2 = 7 � 7 ¡ 3 � 16 = ¡7 � 25 + 11 � 16
C B A

That is, Bézout's identity takes the form ¡7 � 25+ 11 � 16=1.
Reducing modulo 25, we get 11 � 16� 1 (mod25). Hence, 16¡1� 11 (mod25).

Application: credit card numbers

Have you ever thought about the numbers on your credit card? Usually, these are 16 digits. For
instance, 4266 8342 8412 9270.

No worries (or false hopes...). While close, this is not exactly my credit card number.

� The first digit(s) of a credit card identify the issuer of the card. For instance, a leading 4
is typically Visa, 51 to 55 indicate Mastercard, and 34, 37 indicate American Express. The
above credit card is indeed a Visa card.

More information at: https://en.wikipedia.org/wiki/Payment_card_number

� The last digit is a check digit, and a valid credit card number must pass the Luhn check
(patented by IBM scientist Hans Peter Luhn in 1954/60; now in public domain).

This works as follows: every second digit, starting with the first, is doubled. If that results
in a two-digit number, we take the sum of those two digits.24 4 2 6 6 8 3 4 2 8 4 1 2 9 2 7 0

�2 8 12 16 8 16 2 18 14
8 2 3 6 7 3 8 2 7 4 2 2 9 2 5 0

35
The other half of the digits is left unchanged. We then add all these digits and reduce
modulo 10:

8+2+3+6+7+3+8+2+7+4+2+2+9+2+5+0� 0 (mod10)

The result of that computation must be 0. Otherwise, the credit card number fails the
Luhn check and is invalid.

Example 12. (extra exercise)

(a) Check that the number 4266 8342 8412 9280 fails the Luhn check.

(b) How do we have to change the last digit to turn this into a valid credit card number?

Armin Straub
straub@southalabama.edu

3

https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number
https://en.wikipedia.org/wiki/Payment_card_number

The purpose of the Luhn check is to detect accidental errors.

[A random credit card number has a 90% chance of failing the Luhn check. Why?!]

On the other hand, as the previous example shows, it provides basically no protection against
malicious attacks (except against amateur criminals not aware of the Luhn check).

The Luhn check was designed before online banking (patent filed in 1954). So a special focus is
on detecting accidental errors that occur frequently when writing down (things like) credit card
numbers by hand.

� For instance, it is common that a single digit gets messed up. Every such error is detected
by the Luhn check. (Why?!)

� Another common error is to transpose two digits. Every such error (with the exception of
09 versus 90) is detected.

For instance. A 82 at the beginning contributes 7 + 2 = 9 to the check sum, while a 28 contributes
4+8� 2 to the sum. Hence, replacing one with the other will result in the Luhn check failing.
Advanced comment. An alternative checksum formula that can detect all single digit changes as well
as all transpositions is the Verhoeff algorithm (1969). It is, however, much more complicated and cannot
be readily performed by hand.

Example 13. The doubling and sum-of-digits procedure permutes the digits as follows:

original digit 0 1 2 3 4 5 6 7 8 9
adjusted digit 0 2 4 6 8 1 3 5 7 9

difference (mod10) 0 1 2 3 4 6 7 8 9 0

Note. Looking at the differences modulo 10, we can see why the Luhn check is able to detect all transposition
errors (except 09 versus 90).

Example 14. The Luhn check has the somewhat complicated feature that every second digit has
to be doubled. Why do we not just add all the original digits and reduce the sum modulo 10?
Solution. One reason is that this simplified check does not catch the transposition of two digits. Why?!
[On the other hand, that simplified check does also detect if just a single digit is incorrect.]

Example 15. (extra) The International Standard Book Number ISBN-10 consists of nine digits
a1a2:::a9 followed by a tenth check digit a10 (the symbol X is used if the digit equals 10), which
satisfies

a10�
X
k=1

9

kak (mod 11):

The ISBN 0-13-186239-? is missing the check digit (printed as �?�). Compute it!

Solution. 1 � 0+2 � 1+3 � 3+4 � 1+5 � 8+6 � 6+7 � 2+8 � 3+9 � 9= 210� 1 (mod11)
Hence, the full ISBN is 0-13-186239-1.

Comment. The check digit is designed so that it is always possible to detect when a single digit is messed up.
It is also always possible to detect when two digits are transposed.

This is another example of error checking, which is standard practice for all sorts of identification
numbers (such as bank account numbers, VIN, . . .). With a little more effort error correction is
also possible.

Armin Straub
straub@southalabama.edu

4

Sketch of Lecture 3 Fri, 1/12/2024

Euler's phi function

Definition 16. Euler's phi function �(n) gives the number of integers in f1; 2; :::; ng that are
relatively prime to n.

In other words, �(n) counts how many residues are invertible modulo n.

Example 17. Compute �(n) for n=1; 2; :::; 8.
Solution. �(1)= 1, �(2)=1, �(3)= 2, �(4)=2, �(5)= 4, �(6)=2, �(7)= 6, �(8)= 4.

Observation. �(n)=n¡ 1 if and only if n is a prime.
This is true because �(n)=n¡ 1 if and only if n is coprime to all of f1; 2; :::; n¡ 1g.

Observation. If p is a prime, then �(pk)= pk¡ pk¡1= pk
�
1¡ 1

p

�
.

This is true because, if p is a prime, then n= pk is coprime to all f1; 2; :::; pkg except p; 2p; 3p; :::; pk (the
multiples of p, of which there are pk/p= pk¡1 many).

If the prime factorization of n is n= p1
k1���prkr, then �(n)=n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
.

Why is this true?

� We observed above that the formula is true if n= pk is a prime power.

� On the other hand, for composite n, say n= ab, we have: �(ab)= �(a)�(b) if gcd (a; b)= 1

This is a consequence of the Chinese remainder theorem. (Review if necessary! We'll use it later but will
only review it briefly then.)

The above formula follows from combining these two observations. Can you fill in the details?

Example 18. Compute �(35).
Solution. �(35)= �(5 � 7)= �(5)�(7)=4 � 6= 24

Example 19. Compute �(100).
Solution. �(100)= �(22 � 52)= �(22)�(52)= (22¡ 21) � (52¡ 51)= 40

[Alternatively: �(100)= �(22 � 52)= 100
�
1¡ 1

2

��
1¡ 1

5

�
= 40]

Example 20. Compute �(1000).
Solution. �(1000)= �(23) � �(53)= (8¡ 4)(125¡ 25)= 400

[Alternatively: �(1000)= �(23 � 53)= 1000
�
1¡ 1

2

��
1¡ 1

5

�
= 400.]

Armin Straub
straub@southalabama.edu

5

Sketch of Lecture 4 Wed, 1/17/2024

Historical examples of symmetric encryption

Alice wants to send a secret message to Bob.

What Alice sends will be transmitted through an unsecure medium (like the internet), meaning that others can
read it. However, it is important to Alice and Bob that no one else can understand it.

The original message is referred to as the plaintext m. What Alice actually sends is called the
ciphertext c (the encrypted message).

Symmetric encryption algorithms rely on a secret key k (from some key space) shared by Alice
and Bob (but unknown to anyone else).

¡!m
Alice

E: Encrypt
secret key: k

¡!Ek(m)=c c is sent ¡!c
Bob

D: Decrypt
secret key: k

¡!Dk(c)=m

Our ultimate goal will be to secure messaging against both:

� eavesdropping (goal: confidentiality)

� tampering (goal: integrity and, even stronger, authenticity)
The symmetric encryption approach, by itself, cannot fully protect against tampering. For instance, an
attacker can collect previously sent messages, resend them, or use them to replace new messages. (You
could preface each message with something like a time stamp to address these issues. But that's getting
ahead of ourselves; and there are better ways.)

Shift cipher

The alphabet for our messages will be A;B; :::; Z, which we will identify with 0; 1; :::; 25.
So, for instance, C is identified with the number 2.

Example 21. (shift cipher) A key is an integer k 2 f0; 1; :::; 25g. Encryption works character
by character using

Ek: x 7!x+ k (mod 26):

Obviously, the decryption Dk works as x 7!x¡ k (mod 26).
The key space is f0; 1; :::; 25g. It has size 26. [Well, k=0 is a terrible key. Maybe we should exclude it.]

For instance. If k=1, then the message HELLO is encrypted as IFMMP .
If k=2, then the message HELLO is encrypted as JGNNQ.

Historic comment. Caesar encrypted some private messages with a shift cipher (typically using k = 3). The
shift cipher is therefore also often called Caesar's cipher.
While completely insecure today, it was fairly secure at the time (with many of his enemies being illiterate).
Modern comment. Many message boards on the internet �encrypt� things like spoilers or solutions using a shift
cipher with k= 13. This is called ROT13. What's special about the choice k= 13?
Solution. Since ¡13� 13 (mod26), for ROT13, encryption and decryption are the same!

Armin Straub
straub@southalabama.edu

6

Example 22. (affine cipher) A slight upgrade to the shift cipher, we encrypt each character as

E(a;b): x 7! ax+ b (mod26):

How does the decryption work? How large is the key space?

Solution. Each character x is decrypted via x 7! a¡1(x¡ b) (mod26).
The key is k= (a; b). Since a has to be invertible modulo 26, there are �(26) = �(2) � �(13) = 12 possibilities
for a. There are 26 possibilities for b. Hence, the key space has size 12 � 26= 312.

Vigenere cipher (vector shift cipher)

See Section 2.3 of our book for a full description of the Vigenere cipher.

This cipher was long believed by many (until early 20th) to be secure against ciphertext only attacks (more on
the classification of attacks shortly).

Example 23. Let us encrypt HOLIDAY using a Vigenere cipher with key BAD (i.e. 1; 0; 3).

H O L I D A Y
+ B A D B A D B
= I O O J D D Z

Hence, the ciphertext is IOOJDDZ.

An encrypted message

Example 24. (bonus challenge!) You find a post-it with the following message:

ZHOFRPH WR FUBSWR

Can you make any sense of it?

(To collect a bonus point, send me an email before next class with the plaintext and how you found it.)

Example 25. The challenge from Example 24 was encrypted using :::. The key space has size
:::, so a brute-force attack results in immediate success: we find that the plaintext is :::

This is the worst kind of vulnerability: we successfully mounted a ciphertext only attack.

That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).

Armin Straub
straub@southalabama.edu

7

Fermat's little theorem

Example 26. (warmup) What a terrible blunder::: Explain what is wrong!

(incorrect!) 109� 32=9� 2 (mod 7)

Solution. 109= 10 � 10 � ::: � 10� 3 � 3 � ::: � 3=39. Hence, 109� 39 (mod7).
However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).
Corrected calculation. 32� 2, 34� 4, 38� 16� 2. Hence, 39=38 � 31� 2 � 3�¡1 (mod7).
By the way, this approach of computing powers via exponents that are 2; 4; 8; 16; 32; ::: is called binary
exponentiation. It is crucial for efficiently computing large powers.
Corrected calculation (using Fermat). 36 � 1 just like 30 = 1. Hence, we are allowed to reduce exponents
modulo 6. Hence, 39� 33�¡1 (mod7).

Theorem 27. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

Proof. (beautiful!) Since a is invertible modulo p, the first p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all different modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �
Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that xn+ yn=
zn has no integer solutions if n> 2 (only recently proved by Wiles).

Armin Straub
straub@southalabama.edu

8

Sketch of Lecture 5 Fri, 1/19/2024

Example 28. (bonus challenge!) Eve, can you crack the following message?

OIWW PIHX RR PSQHDC

Word on the street is that Alice was using the Vigenere cipher with a key of size 2.

(To collect a bonus point, send me an email before next class with the plaintext and how you found it.)

Attacks

So far, we considered the weakest kind of attack only: namely, a ciphertext only attack. And,
even then, the historical ciphers prove to be terribly insecure.

However, we need to also worry about attacks where our enemy has additional insight.

� In a known plaintext attack, the enemy somehow has knowledge of a plaintext-ciphertext pair (m; c).

� In a chosen plaintext attack, the enemy can, herself, compute c=E(m) for a chosen plaintextm (�gained
some sort of access to our encryption device�).

� In a chosen ciphertext attack, the enemy can, herself, compute m = D(c) for a chosen ciphertext c
(�gained some sort of access to our decryption device�).

There exist many variations of these. Sometimes, the attacker can make several choices (maybe even adaptively),
sometimes she only has partial information.

Example 29. Alice sends the ciphertext BKNDKGBQ to Bob. Somehow, Eve has learned
that Alice is using the Vigenere cipher and that the plaintext is ALLCLEAR. Next day, Alice
sends the message DNFFQGE. Crack it and figure out the key that Alice used! (What kind
of attack is this?)

Solution. This is a known plaintext attack.
Since m+ k= c (to be interpreted characterwise, modulo 26, and with k repeated as necessary), we can find k
simply as k= c¡m.
For instance, since A (value 0!) got encrypted to B, the first letter of the key is B.

c B K N D K G B Q
m ¡ A L L C L E A R
k = B Z C B Z C B Z

We conclude that the key is k=BZC.
Note. Now, we can decrypt any future message that Alice sends using this key. For instance, we easily decrypt
DNFFQGE to CODERED (using m= c¡ k).

All of the historical ciphers we have seen, including the substitution cipher that we will discuss
shortly, fall apart completely under a known plaintext attack.

Armin Straub
straub@southalabama.edu

9

Euler's theorem

Example 30. Compute 31003 (mod101).
Solution. Since 101 is a prime, 3100� 1 (mod101) by Fermat's little theorem.
Because 3100� 30 (mod101), this enables us to reduce exponents modulo 100.
In particular, since 1003� 3 (mod100), we have 31003� 33= 27 (mod101).

Fermat's little theorem is a special case of Euler's theorem :

Theorem 31. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).
Proof. Euler's theorem can be proved along the lines of our earlier proof of Fermat's little theorem. The only
adjustment is to only start with multiples ka where k is invertible modulo n. There are �(n) such residues k,
and so that's where Euler's phi function comes in. Can you complete the proof? �

Example 32. What are the last two (decimal) digits of 37082?
Solution. We need to determine 37082 (mod100). �(100)= �(2252)= �(22)�(52)= (22¡ 21)(52¡ 51)=40.
Since gcd (3; 100)= 1 and 7082� 2 (mod40), Euler's theorem shows that 37082� 32=9 (mod100).

Binary exponentiation

Example 33. Compute 325 (mod 101).
Solution. Fermat's little theorem is not helpful here.
Instead, we do binary exponentiation:
32=9, 34= 81�¡20, 38� (¡20)2= 400�¡4, 316� (¡4)2� 16, all modulo 101
25= 16+8+1 [Every integer n> 0 can be written as a sum of distinct powers of 2 (in a unique way).]

Hence, 325=316 � 38 � 31� 16 � (¡4) � 3=¡192� 10 (mod101).

Example 34. (extra practice) Compute 220 (mod41).
Solution. 22=4, 24= 16, 28= 256� 10, 216� 100� 18. Hence, 220=216 � 24� 18 � 16= 288� 1 (mod41).
Or: 25= 32�¡9 (mod41). Hence, 220=(25)4� (¡9)4= 812� (¡1)2=1 (mod41).
Comment. Write a=220 (mod41). It follows from Fermat's little theorem that a2=240� 1 (mod41). The
argument below shows that a��1 (mod41) [but we don't know which until we do the calculation].

The equation x2� 1 (mod p) is equivalent to (x¡ 1)(x+1)� 0 (mod p) [b/c (x¡ 1)(x+1)=x2¡ 1]. Since
p is a prime and pj(x¡ 1)(x+1), we must have pj(x¡ 1) or pj(x+1). In other words, x��1 (mod p).

Armin Straub
straub@southalabama.edu

10

Sketch of Lecture 6 Mon, 1/22/2024

Representations of integers in different bases

We are commonly using the decimal system of writing numbers. For instance:
1234=1 � 103+2 � 102+3 � 101+4 � 100:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=1 � b3+2 � b2+3 � b1+4 � b0:

In this example, b> 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.
Comment. In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To
avoid confusion, one refers to 4 as the least significant digit and 1 as the most significant digit.

Example 35. 25= 16+8+1= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20.
Accordingly, 25=(11001)2.

While the approach of the previous example works well for small examples when working by hand
(if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 36. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49=(:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 . Hence, 49=(:::10001)2 where ::: are the digits for 1.

� 1=0 � 2+ 1 . Hence, 49=(110001)2.

Other bases.
What is 49 in base 3? 49= 16 � 3+ 1 , 16=5 � 3+ 1 , 5=1 � 3+ 2 , 1=0 � 3+ 1 . Hence, 49=(1211)3.

What is 49 in base 5? 49=(144)5.
What is 49 in base 7? 49=(100)7.

Example 37. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer
applications.
For instance, in JavaScript or Python, 0b::: means (:::)2, 0o::: means (:::)8, and 0x::: means (:::)16.
The digits 0; 1; :::; 15 in hexadecimal are typically written as 0; 1; :::; 9; A;B;C;D;E; F .
Example. FACE value in decimal? (FACE)16= 15 � 163+ 10 � 162+ 12 � 16+ 14= 64206
Practical example. chmod 664 file.tex (change file permission)

664 are octal digits, consisting of three bits: 1= (001)2 execute (x), 2= (010)2 write (w), 4= (100)2 read (r)

Hence, 664 means rw,rw,r. What is rwx,rx,-? 750

By the way, a fourth (leading) digit can be specified (setting the flags: setuid, setgid, and sticky).

Armin Straub
straub@southalabama.edu

11

Example 38. (substitution cipher) In a substitution cipher, the key k is some permutation of
the letters A;B; :::; Z. For instance, k=FRA:::. Then we encrypt A!F , B!R, C!A and
so on. How large is the key space?
Solution. Key space has size 26!�1026.6� 288.4, so a key can be stored using 89 bits. That's actually a fairly
large key space (for instance, DES has a key size of 56 bits only). Too large to go through by brute force.
However, still easy to break. Since each letter is always replaced with the same letter, this cipher is susceptible
to a frequency attack, exploiting that certain letters (and, more generally, letter combinations!) occur much
more frequently in, say, English text than others. For instance, Lewand's book on Cryptology lists the following
frequencies:
E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%, I: 7%, N: 6.7%, S: 6.3%, H: 6.1%, R: 6%, D: 4.3%, L: 4%, C: 2.8%, :::
The rarest letters are Q and Z with a frequency of about 0.1% only. (The exact frequencies and precise ordering
various between different sources and the body of text that the frequencies were obtained from.)
The most common letter pairs (digrams) are TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI
HI AS TO.
More information at: https://en.wikipedia.org/wiki/Letter_frequency
Comment. Note that the frequencies and even the ranking depend considerably on the source of text. For
instance, using government telegrams, a military resource lists EN followed by RE, ER as the most frequent
digrams. That same manual suggests SENORITA as a mnemonic to remember the most frequent letters.
http://www.umich.edu/~umich/fm-34-40-2/ (Field Manual 34-40-2, Department of the Army, 1990)

Example 39. It seems convenient to add the space as a 27th letter in the historic encryption
schemes. Can you think of a reason against doing that?
Solution. In most texts, the space occurs more frequently and more regularly than any other letter. Adding it
to the encryption schemes would make them even more susceptible to attacks.

Example 40. (bonus challenge!) You intercept the following message from Alice:

WHCUHFWXOWHUQXOMOMQVSQWAMWHCUHFXOLNWXQMQVSQWAWMQLN

Your experience tells you that Alice is using a substitution cipher. You also know that this message
contains the word �secret�. Can you crack it?
Note. In modern practice, it is not uncommon to know (or suspect) what a certain part of the message should
be. For instance, PDF files start with �%PDF� (0x25504446).
See https://en.wikipedia.org/wiki/Magic_number_(programming) for more such instances.

(To collect a bonus point, send me an email within the next week with the plaintext and how you found it.)

Modern ciphers

Example 41. For modern ciphers, we will change the alphabet from A;B; :::; Z to 0; 1. One of
the most common ways of encoding text is ASCII.
In ASCII (American Standard Code for Information Interchange), each letter is represented using 8 bits (1 byte).
Among the 28= 256 many characters are the usual letters, as well as common symbols.
For instance: space=(20)16, �0�=(30)16, A=(41)16=(0100; 0001)2= 65, a=(61)16=(0110; 0001)2= 97
See, for instance, http://www.asciitable.com for the full table.

Example 42. The new (8/2018) insignia of FinCEN features binary digits. What do they mean?

01000110 01101001 01101110 01000011 01000101 01001110 https://www.fincen.gov

By the way. If you ever have more than $10; 000 in foreign accounts, you must file a report to FinCEN.

Armin Straub
straub@southalabama.edu

12

https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
http://www.umich.edu/~umich/fm-34-40-2/
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
https://en.wikipedia.org/wiki/Magic_number_%28programming%29
http://www.asciitable.com
http://www.asciitable.com
http://www.asciitable.com
https://www.fincen.gov
https://www.fincen.gov
https://www.fincen.gov

One-time pad

Definition 43. The �exclusive or� (XOR), often written �, is defined bitwise:

0 0 1 1
� 0 1 0 1
= 0 1 1 0

Note. On the level of individual bits, this is just addition modulo 2.
By the way. Best thing about a boolean: even if you are wrong, you are only off by a bit.

Example 44. 1011� 1111= 0100

Example 45. Observe that a� b� b= a.

One way to see that is to think bitwise in terms of addition modulo 2. Then, a+ b+ b= a+2b� a (mod2).

A one-time pad works as follows. We use a key k of the same length as the message m. Then
the ciphertext is

c=Ek(m)=m� k:

To decipher, we use m=Dk(c)= c� k.
As the name indicates, we must never use this key again!

Note. Observe that encryption and decryption are the same routine.
Comment. If that is helpful, a one-time pad is doing exactly the same as the Vigenere cipher if we use a key of
the same length as the message (also, we use 0; 1 as our letters instead of the classical A;B; :::; Z).

Example 46. Using a one-time pad with key k = 1100; 0011, what is the message m = 1010;
1010 encrypted to?

Solution. c=m� k= 0110; 1001

If a one-time pad (with perfectly random key) is used exactly once to encrypt a message, then
perfect confidentiality is achieved (eavesdropping is hopeless).

Meaning that Eve intercepting the ciphertext can draw absolutely no conclusions about the plaintext (because,
without information on the key, every text of the right length is actually possible and equally likely), see next
example.

Example 47. A ciphertext only attack on the one-time pad is entirely hopeless. Explain why!
Solution. The attacker only knows c =m � k. The attacker is unable to get any information on m, because
every other message m0 (of the right length) could have resulted in the same ciphertext c.
Indeed, the key k0=m0� c encrypts m0 to c as well (because m0� k0=m0� (m0� c) = c). Moreover, every
plaintext m0 is equally likely because it corresponds to a unique key.

The next example highlights the importance of only using the key once.

Example 48. (attack on the two-time pad) Alice made a mistake and encrypted the two
plaintexts m1, m2 using the same key k. How can Eve exploit that?

Armin Straub
straub@southalabama.edu

13

Solution. Eve knows the two ciphertexts c1=m1� k and c2=m2� k.
Hence, she can compute c1� c2=(m1� k)� (m2� k)=m1�m2.
This means that Eve knows m1 � m2, which is information about the original plaintexts (no key involved!).
That's a cryptographic disaster: Eve should never be able to learn anything about the plaintexts.
In fact. If the plaintexts are, say, English text encoded using ASCII then Eve very possibly can (almost)
reconstruct both m1 and m2 from m1�m2. The reason for that is that the messages are expressed in ASCII,
which means 8 bits per character of text. However, the entropy (a measure for the amount of information in a
message) of (longer) typical English text is frequently below 2 bits per character.
Some details and beautiful graphical illustrations are given at:
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

We saw in Example 47 that ciphertext only attacks on the one-time pad are entirely hopeless.
What about other attacks?

Attacks like known plaintext or chosen plaintext don't apply if the key is only to be used once.

Yet, the one-time pad by itself provides little protection of integrity. The next example shows
how tampering is possible without knowledge about the key.

Example 49. Alice sends an email to Bob using a one-time pad. Eve knows that and concludes
that, per email standard, the plaintext must begin with To: Bob. Eve wants to tamper with the
message and change it to To: Boo, for a light scare.

� Eve wants to change the 7th letter of the plain text m from b to o.

� Since b is 0x62 and o is 0x6F , we have b� o=0x0D. Hence, b� 0x0D= o.

� Therefore, if e=0x000000000000||| |{z}}} }
6 characters

0D00:::, then �TO: Bob:::�|| |{z}} }
m

� e= �TO: Boo:::�|| |{z}} }
m0

.

� Alice sends c=m� k. If Eve changes the ciphertext c to c0= c� e, then Bob receives c0 and decrypts

it to c0� k=m� k||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
=c

� e
zzz z}|{{{ {c 0

� k=m� e=m0, which is what Eve intended.

Using the one-time pad presents several challenges, including:

� keys must not be reused (see Example 48)

� while perfectly protecting against eavesdropping (if done correctly), the one-time pad is
not secure against tampering (see Example 49)

� key distribution and management
Alice and Bob have to somehow exchange huge amounts of keys, so that, at a later time, they are able
to communicate securely.

� for perfect confidentiality, the key must be perfectly random
But how can we produce huge amounts of random bits?
Especially, how to teach a deterministic machine like a computer to do that? Think about it! This is
much more challenging that it may seem at first:::

These issues make one-time pads difficult to use in practice.
Historic comment. During the Cold War, the �hot line� between Washington and Moscow apparently used one-
time pads for secure communication.

Armin Straub
straub@southalabama.edu

14

http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

Sketch of Lecture 7 Wed, 1/24/2024

Example 50. One thing that makes the one-time pad difficult to use is that the key needs to be
the same length as the plaintext. What if we have a shorter key and just repeat it until it has the
length we need?

That's essentially the Vigenere cipher (in a different alphabet).

Solution. Assuming the attacker knows the length of our key (if she doesn't she can just try all possibilities),
this is equivalent to using the one-time pad several times with the same key. That should never be done! Even
using a key twice means that we become susceptible to a ciphertext only attack (see Example 48).

So, repeating the key is a terrible idea. However, the idea to create a longer (random) key out of
a shorter (random) key is good (we will discuss pseudorandom generators next).

Let us emphasize that, in order to be perfectly confidential, the key for a one-time pad must be
chosen completely at random (otherwise, an attacker can make assumptions on the used keys).

Indeed, the need to generate random numbers shows in every modern cipher.

Stream ciphers

Once we have a way to generate pseudorandom numbers, we can use the idea of the one-time
pad to create a stream cipher.
Start with key of moderate size (say, 128 bits).
Use the key k and a PRG (pseudorandom generator) to generate a much longer pseudorandom keystream
PRG(k). Then encrypt Ek(m)=m�PRG(k).
We lost perfect confidentiality. Security relies on choice of PRG (must be unpredictable).

As with the one-time pad, we must never reuse the same keystream! That does not mean that
we cannot reuse the key: we can do that using a nonce: Ek(m)=m�PRG((nonce; k)), where
the seed is produced by combining the nonce and k (for instance, just concatenating them).

The nonce is then passed (unencrypted) along with the message.
To make sure that we never reuse the same keystream, we must never use the same nonce with the same key.
Remark. A nonce can only be used once, as is in its name. Apparently, according to Urban Dictionary, it is also
common as a British insult, roughly equivalent to wanker.

Armin Straub
straub@southalabama.edu

15

How to generate random numbers?

Natural randomness is surprisingly difficult to harness.
You can for instance play around with a Geiger counter but our department is short on these and getting lots of
random numbers is again challenging.

Linear congruential generators

(linear congruential generator) Let a; b;m be chosen parameters.

From the seed x0, we produce the sequence xn+1� axn+ b (modm).

The choice of a; b;m is crucial for this to generate acceptable pseudorandom numbers.
For instance, glibc uses a = 1103515245, b = 12345, m = 231. (This is one of two implementations.) In that
case, each xi is represented by precisely 31 bits. [Note that the choice of m makes this very fast.]
https://en.wikipedia.org/wiki/Linear_congruential_generator

Linear congruential generators (LCG) are easy to predict and must not be used for cryptographic purposes. More
generally, all polynomial generators are cryptographically insecure. They are still used in practice, because they
are fast and easy to implement and have decent statistical properties. (For instance, our online homework is
generated using random numbers, and there is no need for crypto-level security there.)
Statistical trouble. Can you see why the sequences produced by the glibc LCG alternate between even and odd
numbers? (Similarly, other low bits are much less �random� than the higher bits.) Because of this defect, some
programs (and other implementations of rand() based on LCGs) throw away the low bits entirely.
Comment. The particular choices of a and b in glibc are somewhat mysterious. See, for instance:
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand

Example 51. Generate values using the linear congruential generator xn+1� 5xn+3 (mod 8),
starting with the seed x0=6.
Solution. x1� 1, x2� 0, x3� 3, x4� 2, x5� 5, x6� 4, x7� 7, x8� 6. This is the value x0 again, so the
sequence will now repeat. Note that we went through all 8 residues before repeating. Period 8.
Note. Because 8=23 we can represent each xi using exactly 3 bits. Then x1; x2; x3; :::=1;0;3; ::: corresponds
to the bit stream (001 000 011 :::)2.

Example 52. (extra) Observe that the sequence produced by the linear congruential generator
xn+1� axn+ b (modm) must repeat, at the latest, after m terms. (Why?!)

One can give precise conditions on a; b; m to achieve a full period m. Namely, this happens if
and only if gcd (b;m)=1 and a¡ 1 is divisible by all primes (as well as 4) dividing m.

(a) Generate values using a linear congruential generator xn+1� 2xn+1 (mod10), starting with the seed
x0=5. When do they repeat? Is that consistent with the mentioned condition?

(b) What are possible values for a so that the LCG xn+1� axn+ 11 (mod100) has period 100?

(c) glibc uses a= 1103515245, b= 12345, m=231. After how many terms will the sequence repeat?

Solution.

(a) x1� 1, x2� 3, x3� 7, x4� 5. This is the value x0 again, so the sequence will repeat. Period 4.
[The period is less than 10. This is as predicted by the mentioned condition, because a¡1 is not divisible
by 2 and 5.]

(b) We need that a ¡ 1 is divisible by 4 and 5. Equivalently, a � 1 (mod 20). Hence, possible values are
a=1; 21; 41; 61; 81.

(c) Clearly, gcd (b; m) = 1. Also, a¡ 1 is divisible by 4 (and no primes other than 2 divide m). Hence, for
every seed, values repeat only after going through all 231 residues.

Armin Straub
straub@southalabama.edu

16

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand

Example 53. Let's use the PRG xn+1 � 5xn + 3 (mod 8) as a stream cipher with the key
k=4= (100)2. The key is used as the seed x0 and the keystream is PRG(k) = x1 x2 ::: (where
each xi is 3 bits). Encrypt the message m=(101 111 001)2.
Solution. We first use the PRG with seed x0 = k to produce the keystream PRG(k) = 7; 6; 1; ::: =
(111 110 001 :::)2.
We then encrypt and get c=Ek(m)=m�PRG(k)= (101 111 001)2� (111 110 001)2=(010 001 000)2.
Decryption. Observe that decryption works in the exact same way:
Dk(c)= c�PRG(k)= (010 001 000)2� (111 110 001)2=(101 111 001)2.
Note. The keystream continues as PRG(k) = 7; 6; 1; 0; 3; 2; 5; 4; ::: At this point it repeats itself because we
obtained the value 4, which was our seed. Since the state of this PRG only depends on the value of xn, and there
are 8 possible values for xn, the period 8 is the longest possible. The previous (extra) example gave conditions
on the PRG that guarantee that the period is as long as possible.

Example 54. Can you think of a way in which the numbers produced by a linear congruential
generator differ from truly random ones?
Solution. An easy observation for our small examples is the following: by construction, xn+1�axn+b (modm),
individual values don't repeat unless a full period is reached and everything repeats. Truly random numbers do
repeat every now and then (however, if m is large, then this observation is not exactly practical).
Of course, knowing the parameters a; b; m, the numbers generated by the PRG are terribly predictable.
Knowing just one number, we can produce all the next ones (as well as the ones before). A PRG that is safe for
cryptographic purposes should not be predictable like that! (See next example.)

The next example illustrates the vulnerability of stream ciphers, based on predictable PRGs.

Recall that it is common to know or guess pieces of plaintexts; for instance, every PDF begins with %PDF.

Example 55. Eve intercepts the ciphertext c=(111 111 111)2. It is known that a stream cipher
with PRG xn+1� 5xn+ 3 (mod 8) was used for encryption. Eve also knows that the plaintext
begins with m=(110 1:::)2. Help her crack the ciphertext!

Solution. Since c = m � PRG, we learn that the initial piece of the keystream is PRG = m � c =
(110 1:::)2� (111 1:::)2=(001 0:::)2. Since each xn is 3 bits, we conclude that x1=(001)2=1.
Because the PRG is predictable, we can now recreate the entire keystream! Using xn+1� 5xn+3 (mod8), we
find x2� 0, x3� 3, ::: In other words, PRG=1; 0; 3; :::=(001 000 011 :::)2.
Hence, Eve can decrypt the ciphertext and obtain m = c � PRG = (111 111 111)2 � (001 000 011)2 =
(110 111 100)2.

Armin Straub
straub@southalabama.edu

17

Sketch of Lecture 8 Fri, 1/26/2024

Review.

� A pseudorandom generator (PRG) takes a seed x0 and produces a stream PRG(x0)=
x1x2x3 ::: of numbers, which should �look like� random numbers.
For cryptographic purposes, these numbers should be indistinguishable from random numbers. Even for
somebody who knows everything about the PRG except the seed. (See Example 59.)

� Once we have a PRG, we can use it as a stream cipher: Using the key k, we encrypt
Ek(m)=m�PRG(k). [Here, the key stream PRG(k) is assumed to be in bits.]

As with the one-time pad, we must never reuse the same keystream!

� To reuse the key, we can use a nonce: Ek(m) =m�PRG((nonce; k)), where the seed
is produced by combining the nonce and k (for instance, just concatenating them).
The nonce is then passed (unencrypted) along with the message.
To never reuse the same keystream, we must never use the same nonce with the same key.

Linear feedback shift registers

Here is another basic idea to generate pseudorandom numbers:

(linear feedback shift register (LFSR) Let ` and c1; c2; :::; c` be chosen parameters.

From the seed (x1; x2; :::; x`), where each xi is one bit, we produce the sequence

xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2):

This method is particularly easy to implement in hardware (see Example 57), and hence suited for applications
that value speed over security (think, for instance, encrypted television).

Example 56. Which sequence is generated by the LFSR xn+2 � xn+1 + xn (mod 2), starting
with the seed (x1; x2)= (0; 1)?
Solution. (x1; x2; x3; :::)= (0; 1; 1; 0; 1; 1; :::) has period 3.
Note. Observe that the two previous values determine the state, so there are 22= 4 states of the LFSR. The
state (0; 0) is special (it generates the zero sequence (0; 0; 0; 0; :::)), so there are 3 other states. Hence, it is
clear that the generated sequence has to repeat after at most 3 terms.
Comment. Of course, if we don't reduce modulo 2, then the sequence xn+2 = xn+1 + xn generates the
Fibonacci numbers 0; 1; 1; 2; 3; 5; 8; 13; :::

Example 57. Which sequence is generated by the LFSR xn+3 � xn+1 + xn (mod 2), starting
with the seed (x1; x2; x3)= (0; 0; 1)? What is the period?
[Let us first note that the LFSR has 23=8 states. Since the state (0;0;0) remains zero forever, 7 states remain.
This means that the generated sequence must be periodic, with period at most 7.]

Solution. (x1; x2; x3; :::)= (0; 0; 1; 0; 1; 1; 1; 0; 0; 1; :::) has period 7.
Again, this is not surprising: 3 previous values determine the state, so there
are 23=8 states. The state (0; 0; 0) is special, so there are 7 other states.
Note that this LFSR can be implemented in hardware using three registers
(labeled xn; xn+1; xn+2 in the sketch to the right). During each cycle, the
value of xn is read off as the next value produced by the LFSR.

xn
xn+1xn+2

+

Note. In the part 0; 0; 1; 0; 1; 1; 1 that repeats, the bit 1 occurs more frequently than 0.
The reason for that is that the special state (0; 0; 0) cannot appear.
For the same reason, the bit 1 will always occur slightly more frequently than 0 in LFSRs. However, this becomes
negligible if the period is huge, like 231¡ 1 in Example 58.

Armin Straub
straub@southalabama.edu

18

Example 58. The recurrence xn+31 � xn+28 + xn (mod 2), with a nonzero seed, generates a
sequence that has period 231¡ 1.
Note that this is the maximal possible period: this LFSR has 231 states. Again, the state (0; 0; :::; 0) is special
(the entire sequence will be zero), so that there are 231 ¡ 1 other states. This means that the terms must be
periodic with period at most 231¡ 1.
Comment. glibc (the second implementation) essentially uses this LFSR.
Advanced comment. One can show that, if the characteristic polynomial f(T)=x`+c1x`¡1+c2x`¡2+ :::+c`
is irreducible modulo 2, then the period divides 2`¡ 1. Here, f(T)=T 31+T 28+1 is irreducible modulo 2, so
that the period divides 231¡ 1. However, 231¡ 1 is a prime, so that the period must be exactly 231¡ 1.

Example 59. Eve intercepts the ciphertext c=(1111 1011 0000)2 from Alice to Bob. She knows
that the plaintext begins with m= (1100 0:::)2. Eve thinks a stream cipher using a LFSR with
xn+3�xn+2+xn (mod 2) was used. If that's the case, what is the plaintext?

Solution. The initial piece of the keystream is PRG=m� c=(1100 0:::)2� (1111 1:::)2=(0011 1:::)2.
Each xn is a single bit, and we have x1 � 0, x2 � 0, x3 � 1. The given LFSR produces x4 � x3 + x1 � 1,
x5�x4+x2� 1, x6� 0, x7� 1, and so on. Continuing, we obtain PRG= x1x2:::=(0011 1010 0111)2.
Hence, the plaintext would bem= c�PRG=(1111 1011 0000)2� (0011 1010 0111)2=(1100 0001 0111)2.

A PRG is predictable if, given the stream it outputs (but not the seed), one can with some
precision predict what the next bit will be (i.e. do better than just guessing the next bit).

In other words: the bits generated by the PRG must be indistinguishable from truly random bits, even in the eyes
of someone who knows everything about the PRG except the seed.

The PRGs we discussed so far are entirely predictable because the state of the PRGs is part of
the random stream they output.
For instance, for a given LFSR, it is enough to know any ` consecutive outputs xn; xn+1; :::; xn+`¡1 in order
to predict all future output.

We have seen two simple examples of PRGs so far:

� linear congruential generators xn+1� axn+ b (modm)

� LFSRs xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2)

Of course, we could also combine LFSRs and linear congruential generators (i.e. look at recurrences
like for LFSRs but modulo any parameter m).

However, much of the appeal of an LFSR comes from its extremely simple hardware realization, as the sketch
in Example 57 indicates.

Example 60. (extra) One can also consider nonlinear recurrences (it mitigates some issues). Our
book mentions xn+3�xn+2xn+xn+1 (mod 2). Generate some numbers.

Solution. For instance, using the seed 0; 0; 1, we generate 0; 0; 1
seed

; 0; 1; 1; 1; 0; 1; ::: which now repeats (with
period 4) because the state 1; 0; 1 appeared before. Observe that the generated sequences is only what is called
eventually periodic (it is not strictly periodic because 0; 0; 1 never shows up again).

Armin Straub
straub@southalabama.edu

19

Sketch of Lecture 9 Mon, 1/29/2024

Example 61. Suppose we have two PRGs that output bits. The first repeats after 14 bits, the
second after 18 bits. After how many bits do they repeat simultaneously?

What if the two PRGs repeat after 13 and 17 bits instead?
Solution. Note that the first PRG again repeats after 28 bits, after 42 bits and, in general after 14m bits where
m is any positive integer. Likewise, the second PRG repeats after 18m bits where m is any positive integer.
Therefore, both PRGs repeat simultaneously after lcm (14; 18)= 14 � 18

2
= 126 bits.

Review. Here, lcm is the least common multiple. We can always compute the lcm through the Euclidean
algorithm by using lcm (a; b)=

a � b
gcd (a; b)

.

If the two PRGs repeat after 13 and 17 bits instead, then they repeat simultaneously after lcm(13;17)=13 �17=
221 bits.
Comment. Certain cicadas spend more than 99% of their life underground as nymphs and only emerge as adults
for 4-6 weeks. Interestingly, this life cycle is highly synchronized: cicadas of one species in a region appear all at
once. In 2024, �Brood XIII� and �Brood XIX� will co-emerge. These emerge every 17 and 13 years, respectively.
Therefore this co-emergence is a rare event that only happens every 221 years (though, the same thing happened
2015 with two different broods).
https://en.wikipedia.org/wiki/Periodical_cicadas

Example 62. (bonus!) Eventually the output of the baby CSS in Example 63 has to repeat
(though it need not be perfectly periodic; see Example 60). Once it repeats, what is the period?

Note. The state of the system is determined by 3+4+1=8 bits (3 bits for LFSR-1, 4 bits for LFSR-2, and 1
bit for the carry). Hence, there are 28=256 many states. Since the state with everything 0 is again special, that
means that after at most 255 steps our PRG will reach a state it has been in before. At that point, everything
will repeat.

(To collect a bonus point, send me an email within the next week with the period and how you found it.)

Combining two LFSRs to get the CSS (content scramble system)

A popular way to reduce predictability is to combine several LFSRs (in a nonlinear fashion):

Example 63. The CSS (content scramble system) is based on 2 LFSRs and used for the encryption
of DVDs. Before discussing the actual CSS let us consider a baby version of CSS. Our PRG uses
the LFSR xn+3 � xn+1 + xn (mod 2) as well as the LFSR xn+4 � xn+2 + xn (mod 2). The
output of the PRG is the output of these two LFSRs added with carry.
Adding with carry just means that we are adding bits modulo 2 but add an extra 1 to the next bits if the sum
exceeded 1. This is the same as interpreting the output of each LFSR as the binary representation of a (huge)
number, then adding these two numbers, and outputting the binary representation of the sum.

Armin Straub
straub@southalabama.edu

20

https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas

If we use (0; 0; 1) as the seed for LFSR-1, and (0; 1; 0; 1) for LFSR-2, what are the first 10 bits
output by our PRG?

Solution. With seed 0; 0; 1 LSFR-1 produces 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; :::
With seed 0; 1; 0; 1 LSFR-2 produces 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; :::
We now add these two:

0 1 1 1 0 0 1 0 1 1 ���
+ 0 0 0 1 0 1 0 0 0 1 ���
carry 1 1

0 1 1 0 1 1 1 0 1 0 ���

Hence, the output of our PRG is 0; 1; 1; 0; 1; 1; 1; 0; 1; 0; :::.

Important comment. Make sure you realize in which way this CSS PRG is much less predictable than a single
LFSR! A single LFSR with ` registers is completely predictable since knowing ` bits of output (determines the
state of the LFSR and) allows us to predict all future output. On the other hand, it is not so simple to deduce
the state of the CSS PRG from the output. For instance, the initial (0; 1; :::) output could have been generated
as (0; 0; :::)+ (0; 1; :::) or (0; 1; :::)+ (0; 0; :::) or (1; 0; :::)+ (1; 0; :::) or (1; 1; :::)+ (1; 1; :::).
[In this case, we actually don't learn anything about the registers of each individual LFSR. However, we do learn
how their values have to match up. That's the correlation that is exploited in correlation attacks, like the one
described next class for the actual CSS scheme.]

Advanced comment. Is the carry important? Yes! Let a1; a2; ::: and b1; b2; ::: be the outputs of LFSR-1 and
LFSR-2. Suppose we sum without carry. Then the output is a1+ b1; a2+ b2; ::: (with addition mod 2). If Eve
assigns variables k1; k2; :::; k7 to the 3 + 4 seed bits (the key in the stream cipher), then the output of the
combined LFSR will be linear in these seven variables (because the ai and bi are linear combinations of the ki).
Given just a few more than 7 output bits, a little bit of linear algebra (mod 2) is therefore enough to solve for
k1; k2; :::; k7.
On the other hand, suppose we include the carry. Then the output is a1+ b1; a2+ b2+a1b1; ::: (note how a1b1
is 1 (mod2) precisely if both a1 and b1 are 1 (mod2), which is when we have a carry). This is not linear in the
ai and bi (and, hence, not linear in the ki), and we cannot use linear algebra to solve for k1; k2; :::; k7 as before.

Example 64. In each case, determine if the stream could have been produced by the LFSR
xn+5�xn+2+xn (mod 2). If yes, predict the next three terms.

(STREAM-1) :::; 1; 0; 0; 1; 1; 1; 1; 0; 1; ::: (STREAM-2) :::; 1; 1; 0; 0; 0; 1; 1; 0; 1; :::
Solution. Using the LFSR, the values 1;0;0;1;1 are followed by 1;1;1;0; ::: Hence, STREAM-1 was not produced
by this LFSR.
On the other hand, using the LFSR, the values 1;1;0;0;0 are followed by 1;1;0;1;1;1;0; ::: Hence, it is possible
that STREAM-2 was produced by the LFSR (for a random stream, the chance is only 1/24=6.25% that 4 bits
matched up). We predict that the next values are 1; 1; 0; :::
Comment. This observation is crucial for the attack on CSS described in Example 65.

Armin Straub
straub@southalabama.edu

21

Example 65. (CSS) The CSS (content scramble system) is based on 2 LFSRs and used for the
encryption of DVDs. Let us indicate (in a slightly oversimplified way) how to break it.

CSS was introduced in 1996 and first compromised in 1999. One big issue is that its key size is 40 bits. Since
240� 1.1 � 1012 is small by modern standards, even a direct brute-force attack in time 240 is possible.
However, we will see below that poor design makes it possible to attack it in time 216.
Historic comment. 40 bits was the maximum allowed by US export limitations at the time.
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States

LFSR-17
17 bits (seed uses 16 bits of key)

¡!1 bit X
mod2

(plus previous carry)

#
1 bit

 ¡1 bit LFSR-25
25 bits (seed uses 24 bits of key)

CSS PRG combines one 17-bit LFSR and one 25-bit LFSR. The bits output by the CSS PRG are the sum of the
bits output by the two LFSRs (this is the usual sum, including carries).
The 40 bit key is used to seed the LFSRs (the 4th bit of each seed is �1�, so we need 16+ 24= 40 other bits).
Here's how we break CSS in time 216:

� If a movie is encrypted using MPEG then we know the first few, say x (6-20), bytes of the plaintext.

� As in Example 59, this allows us to compute the first x bytes of the CSS keystream.

� We now go through all 216 possibilities for the seed of LFSR-17. For each seed:

� We generate x bytes using LFSR-17 and subtract these from the known CSS keystream.

� This would be the output of LFSR-25. As in Example 64, we can actually easily tell if such an
output could have been produced by LFSR-25. If yes, then we found (most likely) the correct seed
of LFSR-17 and now also have the correct state of LFSR-25.

This kind of attack is known as a correlation attack.
https://en.wikipedia.org/wiki/Correlation_attack

Comment. Similar combinations of LFSRs are used in GSM encryption (A5/1,2, 3 LFSRs); Bluetooth (E0, 4
LFSRs). Due to certain details, these are broken or have serious weaknesses; so, of course, they shouldn't be
used. However, it is difficult to update things implemented in hachallengerdware:::

Armin Straub
straub@southalabama.edu

22

https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack

Sketch of Lecture 10 Wed, 1/31/2024

Sad but important lessons

Review. CSS (content scramble system) is based on 2 LFSRs whose outputs are added with carry
(the carry is important because it combines the LFSRs in a nonlinear way).

Combining LFSRs in a nonlinear fashion is a good idea for constructing PRGs for cryptographic purposes
(especially because they are simple to implement in hardware). However, as the examples of CSS as well as
GSM/Bluetooth encryption show, a lot of attention has to be paid to the details in order not to compromise
security.

CSS (and many other examples in recent history) teach us one important lesson:

Do not implement your own ideas for serious crypto!

We will soon see that there exist cryptosystems which are believed to be secure. While none
of these beliefs are proven, we do know that certain of these are in fact secure (if implemented
correctly) if and only if a certain important mathematical problem cannot be easily solved.

� So, to crack such a system, one has to solve a mathematical problem that many people care about deeply.
If this happens, you will most likely read about it in the (academic) news, and you will have an opportunity
to update your system in time (most likely, you'll hear about progress much earlier).

� On the other hand, if you use a cryptosystem that is not well-studied, then it may well happen that an
adversary breaks your system and keeps exploiting the security leak without you ever learning about it.

Not particularly related but important to keep in mind:

Frequently, security's weakest link are humans. It's very hard to protect against that.

https://en.wikipedia.org/wiki/Social_engineering_(security)

Review: Chinese remainder theorem

Example 66. (warmup)

(a) If x� 3 (mod10), what can we say about x (mod 5)?

(b) If x� 3 (mod 7), what can we say about x (mod 5)?

Solution.

(a) If x� 3 (mod10), then x� 3 (mod5).
[Why?! Because x� 3 (mod10) if and only if x=3+10m, which modulo 5 reduces to x� 3 (mod5).]

(b) Absolutely nothing! x=3+7m can be anything modulo 5 (because 7� 2 is invertible modulo 5).

Example 67. If x� 32 (mod 35), then x� 2 (mod 5), x� 4 (mod 7).
Why?! As in the first part of the warmup, if x� 32 (mod35), then x� 32 (mod5) and x� 32 (mod7).

The Chinese remainder theorem says that this can be reversed!
That is, if x� 2 (mod5) and x� 4 (mod7), then the value of x modulo 5 � 7= 35 is determined.
[How to find the exact value of x, namely x� 32 (mod35), is discussed in the next example.]

Armin Straub
straub@southalabama.edu

23

https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)

Example 68. Solve x� 2 (mod 5), x� 4 (mod 7).
Solution. x� 2 � 7 � 7mod5

¡1

3

+4 � 5 � 5mod7
¡1

3

� 42+ 60� 32 (mod35)

Important. Can you see how we need 5 and 7 to be coprime here?
Brute-force solution. Note that, while in principle we can always perform a brute-force search, this is not practical
for larger problems. Here, if x is a solution, then so is x+ 35. So we only look for solutions modulo 35.
Since x� 4 (mod7), the only candidates for solutions are 4; 11; 18; ::: Among these, we find x= 32.
[We can also focus on x� 2 (mod5) and consider the candidates 2; 7; 12; :::, but that is even more work.]

Example 69. Solve x� 1 (mod 4), x� 2 (mod 5).
Solution. x� 1 � 5 � 5mod4

¡1

1

+2 � 4 � 4mod5
¡1

¡1

� 5¡ 8�¡3 (mod20)

Example 70. Solve x� 1 (mod 4), x� 2 (mod 5), x� 3 (mod 7).
Solution. (option 1) By the previous problem, the first two congruences combine to x�¡3 (mod20).

Using x�¡3 (mod20), x�3 (mod7), we find x�¡3 �7 �7mod20
¡1

3

+3 �20�20mod7
¡1

¡1

�¡63¡60�17 (mod140).

Solution. (option 2) x� 1 � 5 � 7 � [(5 � 7)mod4
¡1]

¡1

+2 � 4 � 7 � [(4 � 7)mod5
¡1]

2

+3 � 4 � 5 � [(4 � 5)mod7
¡1]

¡1

� 17 (mod140)

Theorem 71. (Chinese Remainder Theorem) Let n1; n2; :::; nr be positive integers with
gcd (ni; nj)= 1 for i=/ j. Then the system of congruences

x� a1 (modn1); :::; x� ar (modnr)

has a simultaneous solution, which is unique modulo n=n1���nr.

In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence

x (modnm) 7!
�
x (modn)
x (modm)

�
provided that m and n are coprime.
For instance. Let's make the correspondence explicit for n=2, m=3:

0 7!
�
0
0

�
, 1 7!

�
1
1

�
, 2 7!

�
0
2

�
, 3 7!

�
1
0

�
, 4 7!

�
0
1

�
, 5 7!

�
1
2

�

Armin Straub
straub@southalabama.edu

24

Sketch of Lecture 11 Fri, 2/2/2024

Example 72. Solve x� 4 (mod 5), x� 10 (mod13).

Solution. x� 4 � 13 � 13mod5
¡1

2

+ 10 � 5 � 5mod13
¡1

¡5

� 104¡ 250� 49 (mod65)

Check. Since it is easy to do so, we should quickly check our answer: 49� 4 (mod5), 49� 10 (mod13)

Example 73. Let p; q > 3 be distinct primes.

(a) Show that x2� 9 (mod p) has exactly two solutions (i.e. �3).

(b) Show that x2� 9 (mod pq) has exactly four solutions (�3 and two more solutions �a).

Solution.

(a) If x2 � 9 (mod p), then 0 � x2 ¡ 9 = (x ¡ 3)(x + 3) (mod p). Since p is a prime it follows that
x¡ 3� 0 (mod p) or x+3� 0 (mod p). That is, x��3 (mod p).

(b) By the CRT, we have x2 � 9 (mod pq) if and only if x2 � 9 (mod p) and x2 � 9 (mod q). Hence,
x��3 (mod p) and x��3 (mod q). These combine in four different ways.
For instance, x� 3 (mod p) and x� 3 (mod q) combine to x� 3 (mod pq). However, x� 3 (mod p)
and x�¡3 (mod q) combine to something modulo pq which is different from 3 or ¡3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion?
Comment. There is nothing special about 9. The same is true for x2� a2 (mod pq) for each integer a.

Example 74. Determine all solutions to x2� 9 (mod35).

Solution. By the CRT:

x2� 9 (mod35)
() x2� 9 (mod5) and x2� 9 (mod7)
() x��3 (mod5) and x��3 (mod7)

The two obvious solutions modulo 35 are �3. To get one of the two additional solutions, we solve x�3 (mod5),
x�¡3 (mod7). [Then the other additional solution is the negative of that.]

x� 3 � 7 � 7mod5
¡1

3

¡ 3 � 5 � 5mod7
¡1

3

� 63¡ 45� 18 (mod35)

Hence, the solutions are x��3 (mod35) and x��17 (mod35). [�18��17 (mod35)]

Silicon slave labor. We can let Sage (more next page!) do the work for us:

Sage] solve_mod(x^2 == 9, 35)

[(17); (32); (3); (18)]

Armin Straub
straub@southalabama.edu

25

Sage

Any serious cryptography involves computations that need to be done by a machine. Let us see
how to use the open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 75. Let's start with some basics.

Sage] 17 % 12

5

Sage] (1 + 5) % 2 # don't forget the brackets

0

Sage] inverse_mod(17, 23)

19

Sage] xgcd(17, 23)

(1;¡4; 3)

Sage] -4*17 + 3*23

1

Sage] euler_phi(84)

24

Example 76. Why is the following bad?

Sage] 3^1003 % 101

27

The reason is that this computes 31003 first, and then reduces that huge number modulo 101:
Sage] 3^1003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to efficiently avoid computing huge intermediate numbers (binary exponentiation!).
Sage does the same if we instead use something like:

Sage] power_mod(3, 1003, 101)

27

Armin Straub
straub@southalabama.edu

26

sagemath.org
cocalc.com

Sketch of Lecture 12 Mon, 2/5/2024

Example 77. (review) The solutions to x2� 9 (mod 35) are �3 and �17 (mod35).

Example 78. Determine all solutions to x2� 4 (mod105).
Solution. By the CRT:

x2� 4 (mod105)
() x2� 4 (mod3) and x2� 4 (mod5) and x2� 4 (mod7)
() x��2 (mod3) and x��2 (mod5) and x��2 (mod7)

At this point, we see that there are 23=8 solutions.
For instance, let us find the solution corresponding to x� 2 (mod3), x� 2 (mod5), x�¡2 (mod7):

x� 2 � 5 � 7 � [(5 � 7)mod3
¡1]

¡1

+2 � 3 � 7 � [(3 � 7)mod5
¡1]

1

¡ 2 � 3 � 5 � [(3 � 5)mod7
¡1]

1

�¡70+ 42¡ 30=¡58� 47

Similarly, we find all eight solutions (note how the solutions pair up):

(mod 3) (mod 5) (mod 7) (mod 105)
2 2 2 2

¡2 ¡2 ¡2 ¡2
2 2 ¡2 47

¡2 ¡2 2 ¡47
2 ¡2 2 23

¡2 2 ¡2 ¡23
¡2 2 2 37
2 ¡2 ¡2 ¡37

The complete list of solutions is: �2;�23;�37;�47

Silicon slave labor. Once we are comfortable doing it by hand, we can easily let Sage do the work for us:

Sage] crt([2,2,-2], [3,5,7])

47

Sage] solve_mod(x^2 == 4, 105)

[(37); (82); (58); (103); (2); (47); (23); (68)]

Review: quadratic residues

Definition 79. An integer a is a quadratic residue modulo n if a�x2 (modn) for some x.

Important note. Products of quadratic residues are quadratic residues.

Example 80. List all quadratic residues modulo 11.
Solution. We compute all squares: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2� 5, (�5)2� 3. Hence, the
quadratic residues modulo 11 are 0; 1; 3; 4; 5; 9.
Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?
[Hint. x2� y2 (mod p) () (x¡ y) (x+ y)� 0 (mod p) () x� y or x�¡y (mod p)]

Example 81. List all quadratic residues modulo 15.
Solution. We compute all squares modulo 15: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2�1, (�5)2�10,
(�6)2� 6, (�7)2� 4. Hence, the quadratic residues modulo 15 are 0; 1; 4; 6; 9; 10.
Important comment. Among the �(15)=8 invertible residues, the quadratic ones are 1; 4 (exactly a quarter).
Note that 15 is of the form n= pq with p; q distinct primes.

Armin Straub
straub@southalabama.edu

27

Theorem 82. Let p; q; r be distinct odd primes.

� The number of invertible residues modulo n is �(n).

� The number of invertible quadratic residues modulo p is �(p)

2
= p¡ 1

2
.

� The number of invertible quadratic residues modulo pq is �(pq)

4
= p¡ 1

2

q¡ 1
2

.

� The number of invertible quadratic residues modulo pqr is �(pqr)

8
= p¡ 1

2

q¡ 1
2

r¡ 1
2

.

� :::

Proof.

� We already knew that the number of invertible residues modulo n is �(n).

� Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a2 be
one of the nonzero quadratic residues. As we observed earlier, x2� a2 (mod p) has exactly 2 solutions,
meaning that exactly two residues (namely �a) square to a2. Hence, the number of invertible quadratic
residues modulo p is half the number of invertible residues modulo p.

� Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a2

be one of the invertible quadratic residues. By the CRT, x2�a2 (modpq) has exactly 4 solutions (why is it
important that a is invertible here?!), meaning that exactly four residues square to a2. Hence, the number
of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq.

� Spell out the situation modulo pqr! �

Comment. Make similar statements when one of the primes is equal to 2.

Example 83. (bonus!) What is the total number of quadratic residues modulo pqr if p; q; r are
distinct odd primes? (To collect a bonus point, send me the answer and a short explanation by next week.)

Armin Straub
straub@southalabama.edu

28

Sketch of Lecture 13 Wed, 2/7/2024

Example 84. (bonus!) The LFSR xn+31�xn+28+xn (mod2) from Example 58, which is used
in glibc, is entirely predictable because observing x1; x2; :::; x31 we know what x32; x33; ::: are
going to be. Alice tries to reduce this predictability by using only x3; x6; x9; ::: as the output of
the LFSR. Demonstrate that this PRG is still perfectly predictable by showing the following:

Challenge. Find a simple LFSR which produces x3; x6; x9; :::

Send me the LFSR, and an explanation how you found it, by next week for a bonus point!

Comment. There is nothing special about this LFSR. Moreover, a generalization of this argument shows that
only outputting every Nth bit of an LFSR is always going to result in an entirely predictable PRG.

The Blum-Blum-Shub PRG

The Blum-Blum-Shub PRG is an example of a PRG, which is believed to be unpredictable.
More precisely, it has been shown that the ability to predict its values is equivalent to being able to efficiently
solve the quadratic residuosity problem (which is believed to be hard). Currently, the best way to �solve� the
quadratic residuosity problem mod M relies on factoring M . However, factoring large numbers is considered to
be hard (and lots of crypto relies on that).
Quadratic residuosity problem. Given bigM = pq and a residue x moduloM , decide whether x is a quadratic
residue. (AboutM /4 are quadratic residues (the exact number is �(M)/4=(p¡1)(q¡1)/4);M /2 are easily
determined to be nonsquare using the Jacobi symbol [don't worry if you haven't heard about that].)

(Blum-Blum-Shub PRG) Let M = pq where p; q are large primes � 3 (mod 4).
From the seed y0, we generate yn+1� yn2 (modM).
The random bits xn we produce are yn (mod 2) (i.e. xn= least bit of(yn)).

B-B-S is very slow, and mostly of theoretical value. However, as indicated above, it is interesting because it is
indeed unpredictable (to anyone not knowing the factorization of M) if an important number theory problem
(the quadratic residuosity problem) is �hard� (this can be made precise), as is believed to be the case.
Why the conditions on p and q? Recall from the CRT that an invertible quadratic residue x2 moduloM = pq
has exactly four squareroots �x, �y. The condition 3 (mod 4) guarantees that, of these four, exactly one is
itself a quadratic residue. As a consequence, the mapping y 7! y2 (modM) is 1-1 when restricted to invertible
quadratic residues (see below).
Comment. For obvious reasons, the seed y0��1 (modM) should be excluded. Also, for the above considera-
tions to apply, the seed needs to be coprime toM . However, we don't need to worry about that: running into a
factor of M by accident is close to impossible (recall that nobody should be able to factor M even on purpose
and with lots of time and resources).
Comment. To increase speed, at the expense of some security, we can also take several, say k, bits of yn (as
long as k is small, say, k6 log2log2M).

Example 85. Generate random bits using the B-B-S PRG with M = 77 and seed 3.
Solution. With y0= 3, we have y1� y0

2= 9, followed by y2� y1
2� 4 (mod77), y3� 16, y4� 25, y5� 9, so

that the values yn now start repeating.
These numbers are, however, not the output of the PRG. We only output the least bit of the numbers yn, i.e. the
value of yn (mod2). For y1� 9 we output 1, for y2� 4 we output 0, for y3� 16 we output 0, for y4� 25 we
output 1, and so on.
In other words, the seed 3 produces the sequence 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; ::: of period 4.
Comment. Note that it was completely to be expected that the numbers repeat. In fact, we immediately see
that the number of possible yn is at most the number of invertible quadratic residues, of which there are only
�(77)/4= 15.

Armin Straub
straub@southalabama.edu

29

Example 86.

(a) List all invertible quadratic residues modulo 21. Compute the square of all these residues.

(b) Repeat the first part modulo 33 and modulo 35. When computing the squares of these,
do you notice a difference modulo 35?
[Note that 35=5 � 7 with 5� 1 (mod4). This case is excluded in the B-B-S PRG.]

Solution. (final answers only)

(a) Among the �(21)= 12 many invertible elements, the squares are 1; 4; 16 (exactly a quarter).
Computing their squares: 12� 1, 42� 16, 162� 4 (mod21). Note that the squares are all different!

(b) Modulo 33: among the �(33)=20 many invertible elements, the squares are 1;4;16;25;31�82 (exactly
a quarter). Computing their squares: 12� 1, 42� 16, 162� 25, 252� 31, 312� 4 (mod33). Again, all
the squares are different!
Modulo 35: among the �(35) = 24 many invertible elements, the squares are 1; 4; 9; 11 � 92; 16;
29 � 82 (exactly a quarter). Computing their squares: 12 � 1, 42 � 16, 92 � 11, 112 � 16, 162 � 11,
292� 1 (mod35). Observe that these are not all different: for instance, 92� 162 (mod35).

Advanced comment. The map x 7! x2 (mod p) restricted to invertible quadratic residues is 1-1 if and only if
¡1 is not a quadratic residue (which, by the next result, is equivalent to p� 3 (mod4)).
[Sketch of proof. The map is 1-1 if and only if, for each invertible quadratic residue x2, exactly one of the two
square roots �x is itself a quadratic residue. This is equivalent to ¡1 not being a quadratic residue.
Indeed, if ¡1 is a quadratic residue, then x and ¡x are either both quadratic residues or both not.
On the other hand, if not exactly one of �x is a quadratic residue then, because exactly half of the invertible
residues are quadratic, there would be some pair of residues �z which are both quadratic. But then ¡z and
z¡1 are quadratic residues which implies that their product ¡zz¡1�¡1 would be a quadratic residue as well.]

Theorem 87. ¡1 is a quadratic residue modulo (an odd prime) p if and only if p� 1 (mod 4).
In other words, the quadratic congruence x2�¡1 (mod p) has a solution if and only if p� 1 (mod4).

Solution. Let us first see that p� 1 (mod4) is necessary. Assume x2�¡1 (mod p). Then, by Fermat's little
theorem, xp¡1� 1 (mod p). On the other hand, xp¡1= (x2)(p¡1)/2� (¡1)(p¡1)/2 (mod p). We therefore
need (¡1)(p¡1)/2 = 1, which is equivalent to (p ¡ 1)/2 being even. Which is equivalent to p � 1 (mod 4).
(Make sure that's absolutely clear!)

On the other hand, assume that p � 1 (mod 4). We will show that x =
�
p¡ 1
2

�
! has the property that

x2�¡1 (mod p). Indeed,��
p¡ 1
2

�
!

�
2

=(¡1)(p¡1)/2
�
1 � 2 � ::: � p¡ 1

2

�
2

=(�1) � (�2) � ::: �
�
�p¡ 1

2

�
�¡1 (mod p):

[Here, (�1) � (�2)��� is short for 1 � (¡1) �2 � (¡2)���.] For the final congruence, observe that �1;�2; :::;�p¡ 1
2

is
a complete set of all nonzero residues. When multiplying all residues, each will cancel with its (modular) inverse,
except the ones that are their own inverse. But a � a� 1 (mod p) has only the solution a��1, so that �1 are
the only residues not canceling.
Comment. The final step of our argument is known as Wilson's congruence: (p¡ 1)!�¡1 (mod p).

Armin Straub
straub@southalabama.edu

30

Theorem 88. (advanced) Let M = pq where p; q are primes � 3 (mod 4). Then the sequence
generated by yn+1� yn2 (modM) repeats with period dividing lcm (�(p¡ 1); �(q¡ 1)).
In particular, the period of the corresponding B-B-S PRG divides lcm (�(p¡ 1); �(q¡ 1)).

Proof.

� Observe that the numbers are yn= yn¡1
2 = yn¡2

4 = :::= y0
2n (modM). Hence, yn� y0

2n (modM).

� Instead of determining the period directly modulo M = pq, we determine the periods modulo p and q.
[Why? By the CRT, ym� yn (modM) if and only if ym� yn (mod p) and ym� yn (mod q).]
The period modulo M then is the lcm of of the two periods modulo p and q.

� ym� yn (mod p)

() y0
2m� y0

2n (mod p)
(= 2m� 2n (mod�(p))

[it would be �()� with 2m� 2n (modk) where k is the order of y0 (mod p)]
() 2m� 2n (mod p¡ 1)

[note that 2 is not invertible (mod p¡ 1); but 2 is invertible
�
mod p¡ 1

2

�
because p� 3 (mod4)]

() 2m¡1� 2n¡1
�
mod p¡ 1

2

�
[note that m;n> 1]

(= m�n
�
mod�

�
p¡ 1
2

��
[again, it would be �()� with m�n (modk) where k is the order of 2

�
mod p¡ 1

2

�
]

� Reading this backwards, we see that the sequence yn modulo p repeats after �
�
p¡ 1
2

�
terms.

In other words, the (minimal) period divides �
�
p¡ 1
2

�
= �(p¡ 1).

Comment. Here we used p�3 (mod4) to conclude �
�
p¡ 1
2

�
= �(p¡1). Indeed, in that case, p¡1 is

divisible by 2 but not by 4. Hence, 2 and p¡ 1
2

are coprime, so that �(p¡1)=�(2)�
�
p¡ 1
2

�
=�

�
p¡ 1
2

�
.

� By the CRT, the period modulo M = pq divides lcm (�(p¡ 1); �(q¡ 1)). �

Example. In Example 85, we had M = 7 � 11, so that the period of the PRG must divide lcm (�(6); �(10)) =
lcm (2; 4)= 4.
Comment. In practice, people therefore say that, for the cycle length of B-B-S to be large, gcd (�(p ¡ 1);
�(q¡ 1)) should be small.

Armin Straub
straub@southalabama.edu

31

Example 89. We mentioned that the unpredictability of the B-B-S PRG relies on the difficulty
of factoring large numbers. Here's an indication how difficult it seems to be. In 1991, RSA
Laboratories challenged everyone to factor several numbers including:
1350664108659952233496032162788059699388814756056670275244851438515265\
1060485953383394028715057190944179820728216447155137368041970396419174\
3046496589274256239341020864383202110372958725762358509643110564073501\
5081875106765946292055636855294752135008528794163773285339061097505443\
34999811150056977236890927563

Since then, nobody has been able to factor this 1024 bit number (309 decimal digits). Until 2007,
cash prizes were offered up to 200,000 USD, with 100,000 USD for the number above.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Let us illustrate how to actually use this number in the B-B-S PRG.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] seed = randint(2,rsa-2)

Sage] y = seed; prg = []

Sage] for i in [1..25]:
y = power_mod(y, 2, rsa)
prg.append(y % 2)

Sage] prg

[0; 1; 0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; 1]

If you are able, even after gigabytes of pseudorandom bits, to predict the next bits with an accuracy
better than 50% (which is just pure guessing), then you likely have a shot at factoring the big
integer. You would be the first!

Of course, it is not impressive to see a few random bits in the example above. After all, the seed
(which you don't know!) itself consists of 1024 random bits. The whole point is that we can, from
these 1024 random bits, produce gigabytes of further pseudorandom bits. As of this day, no one
would be able to distinguish these from truly random bits.

While all of this works nicely, B-B-S is considered to be too slow for most practical purposes.
Comment. Note that M =135:::563� 3 (mod4). Hence it cannot be a product of primes p; q which are both
3 (mod4) (because 3 � 3� 1 (mod4)).

Example 90. (extra) Generate random bits using the B-B-S PRG with M = 209 and seed 10.
What is the period of the generated sequence? (Then repeat with seed 25.)
Solution. (final answer only) The seed 10 produces the sequence 0; 1; 0; 1; 1; 1; ::: of period 6.
The seed 25 generates the sequence 1; 0; 0; 1; 1; 0; 1; 0; 0; 0; 1; 1; ::: of period 12.
[By the way, it is an excellent idea to let Sage assist you.]

Armin Straub
straub@southalabama.edu

32

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Sketch of Lecture 14 Fri, 2/9/2024

Primality testing

Recall that it is extremely difficult to factor large integers (this is the starting point for many
cryptosystems). Surprisingly, it is much simpler to tell if a number is prime.

Example 91. The following is the number from Example 89, for which RSA Laboratories, until
2007, offered $100,000 to the first one to factorize it. Nobody has been able to do so to this day.
Has the thought crossed your mind that the challengers might be tricking everybody by choosing M to be a
huge prime that cannot be factored further? Well, we'll talk more about primality testing soon. But we can
actually quickly convince ourselves thatM cannot be a prime. If M was prime then, by Fermat's little theorem,
2M¡1 � 1 (modM). Below, we compute 2M¡1 (modM) and find that 2M¡1 �/ 1 (modM). This proves
that M is not a prime. It doesn't bring us any closer to factoring it though.
Comment. Ponder this for a while. We can tell that a number is composite without finding its factors. Both
sides to this story (first, being able to efficiently tell whether a number is prime, and second, not being able to
factor large numbers) are of vital importance to modern cryptography.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] power_mod(2, rsa-1, rsa)

12093909443203361586765059535295699686754009846358895123890280836755673393220205933853\
34853414711666284196812410728851237390407107713940535284883571049840919300313784787895\
22602961512328487951379812740630047269392550033149751910347995109663412317772521248297\
950196643140069546889855131459759160570963857373851

Comment. Just for giggles, let us emphasize once more the need to compute 2N¡1 (modN) without actually
computing 2N¡1. Take, for instance, the 1024 bit RSA challenge number N = 135:::563. In Example 91, we
computed 2N¡1 (modN), observed that it was �/1 and concluded that N is not prime. The number 2N¡1

itself has N �21024�10308.3 binary digits. It is often quoted that the number of particles in the visible universe
is estimated to be between 1080 and 10100. Whatever these estimates are worth, our number has WAY more
digits (!) than that. Good luck writing it out! [Of course, the binary digits are a single 1 followed by all zeros.
However, we need to further compute with that!]
Comment. There is nothing special about 2. You could just as well use, say, 3.

Example 92. (bonus challenge) Find the factors of the following number M = pq:
8932028005743736339360838638746936049507991577307359908743556942810827\
0761514611650691813353664018876504777533577602609343916545431925218633\
75114106509563452970373049082933244013107347141654282924032714311

As indicated in Example 89, this is difficult. Through some sort of espionage, however, you have
learned that �(M) is:
8932028005743736339360838638746936049507991577307359908743556942810827\
0761514611650691813353664018867572649527833866269983077906684989169125\
75956375773572578614678768000225628866990840223520746283867797512

In general, if M = pq is a product of two large primes p; q, given �(M), how can we factor M?
Send me the factorization, and an explanation how you found it, by next week for a bonus point!
Comment. Even if we don't know the number of prime factors of M (in the above case we know that M is a
product of two primes), we can �efficiently� factor M if we know the value of �(M).

Armin Straub
straub@southalabama.edu

33

The Fermat primality test

Example 93. Fermat's little theorem can be stated in the slightly stronger form:

n is a prime () an¡1� 1 (modn) for all a2f1; 2; :::; n¡ 1g

Why? Fermat's little theorem covers the �=)� part. The �(=� part is a direct consequence of the fact that, if
n is composite with divisor d, then dn¡1�/ 1 (modn). (Why?!)

Fermat primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n¡ 2g.
If an¡1�/ 1 (modn), then stop and output �not prime�.

Output �likely prime�.

If an¡1� 1 (modn) although n is composite, then a is called a Fermat liar modulo n.

On the other hand, if an¡1�/ 1 (modn), then n is composite and a is called a Fermat witness modulo n.
Flaw. There exist certain composite numbers n (see Definition 97) for which every a is a Fermat liar (or reveals
a factor of n). For this reason, the Fermat primality test should not be used as a general test for primality. That
being said, for very large random numbers, it is exceedingly unlikely to meet one of these troublesome numbers,
and so the Fermat test is indeed used for the purpose of randomly generating huge primes (for instance in PGP).
In fact, in that case, we can even always choose a=2 and k=1 with virtual certainty of not messing up.
Next class, we will discuss an extension of the Fermat primality test which solves these issues (and is just mildly
slower).
Advanced comment. If n is composite but not an absolute pseudoprime (see Definition 97), then at least half
of the values for a satisfy an¡1�/ 1 (modn) and so reveal that n is not a prime. This is more of a theoretical
result: for most large composite n, almost every a (not just half) will be a Fermat witness.

Example 94. Suppose we want to determine whether n= 221 is a prime. Simulate the Fermat
primality test for the choices a= 38 and a= 24.
Solution.

� First, maybe we pick a= 38 randomly from f2; 3; :::; 219g.
We then calculate that 38220� 1 (mod221). So far, 221 is behaving like a prime.

� Next, we might pick a= 24 randomly from f2; 3; :::; 219g.
We then calculate that 24220� 81�/ 1 (mod221). We stop and conclude that 221 is not a prime.

Important comment. We have done so without finding a factor of n. (To wit, 221= 13 � 17.)
Comment. Since 38 was giving us a false impression regarding the primality of n, it is called a Fermat liar
modulo 221. Similarly, we say that 221 is a pseudoprime to the base 38.
On the other hand, we say that 24 was a Fermat witness modulo 221.
Comment. In this example, we were actually unlucky that our first �random� pick was a Fermat liar: only 14 of
the 218 numbers (about 6.4%) are liars. As indicated above, for most large composite numbers, the proportion
of liars will be exceedingly small.

Example 95. Which of 6; 7; 8; 9 are Fermat liars modulo 25?
Solution. Recall that a is a Fermat liar modulo 25 if a24�1 (mod25). We compute 624�21, 724�1, 824�21,
924� 11 (all modulo 25). It follows that, among those four, only 7 is a Fermat liar modulo 25.

Armin Straub
straub@southalabama.edu

34

Example 96. Which of 10; 15; 20; 25; 30 are pseudoprimes to the base 7?
Solution. Recall that n is a pseudoprime to the base 7 if 7n¡1� 1 (modn). We compute 79� 7 (mod10),
714� 4 (mod15), 719� 3 (mod20), 724� 1 (mod25), 729� 7 (mod30). It follows that, among those five,
only 25 is a pseudoprime to the base 7.

Absolute pseudoprimes

Somewhat suprisingly, there exist composite numbers n with the following disturbing property:
every residue a is a Fermat liar or gcd (a; n)> 1.
This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a;n)) of n (which is exceedingly unlikely for large numbers).
[Recall that, for large numbers, we do not know how to find factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes:

Definition 97. A composite positive integer n is an absolute pseudoprime (or Carmichael
number) if an¡1� 1 (modn) holds for each integer a with gcd (a; n)= 1.
The first few are 561; 1105; 1729; 2465; ::: (it was only shown in 1994 that there are infinitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)

Example 98. Show that 561 is an absolute pseudoprime.
Solution. We need to show that a560� 1 (mod561) for all invertible residues a modulo 561.
Since 561=3 � 11 � 17, a560� 1 (mod561) is eqivalent to a560� 1 (mod p) for each of p=3; 11; 17.
By Fermat's little theorem, we have a2� 1 (mod3), a10� 1 (mod11), a16� 1 (mod17). Since 2;10;16 each
divide 560, it follows that indeed a560� 1 (mod p) for p=3; 11; 17.
Comment. Korselt's criterion (1899) states that what we just observed in fact characterizes absolute pseudo-
primes. Namely, a composite number n is an absolute pseudoprime if and only if n is squarefree, and for all
primes p dividing n, we also have p¡ 1jn¡ 1.
Comment. Our argument above shows that, in fact, a80�1 (mod561) for all invertible residues a modulo 561.

Theorem 99. (Korselt's Criterion) A composite positive integer n is an absolute pseudoprime
if and only if n is squarefree and (p¡ 1)j(n¡ 1) for each prime divisor p of n.

Proof. Here, we will only consider the �if� part (the �only if� part is also not hard to show but the typical proof
requires a little more insight into primitive roots than we currently have).
To that end, assume that n is squarefree and that (p¡ 1)j(n¡ 1) for each prime divisor p of n. Let a be any
integer with gcd (a; n)= 1. We will show that an¡1� 1 (modn).
n being squarefree means that its prime factorization is of the form n = p1�p2���pd for distinct primes pi
(this is equivalent to saying that there is no integer m > 1 such that m2jn). By Fermat's little theorem
api¡1�1 (mod pi) and, since (pi¡1)j(n¡1), we have an¡1�1 (mod pi) for all pi. It therefore follows from
the Chinese remainder theorem that an¡1� 1 (modn). �
Comment. Modulo a prime p, Fermat's little theorem implies that ap�a (mod p) for each integer a. (Why?!)
It therefore follows from the above argument that, for an absolute pseudoprime n, we have an�a (modn) for
each integer a (and this property characterizes absolute pseudoprimes).

Armin Straub
straub@southalabama.edu

35

Sketch of Lecture 15 Mon, 2/12/2024

Example 100. How can you check whether a huge randomly selected number N is prime?

Solution. Compute 2N¡1 (modN) using binary exponentiation. If this is �/1 (modN), then N is not a prime.
Otherwise, N is a prime or 2 is a Fermat liar moduloN (but the latter is exceedingly unlikely for a huge randomly
selected number N ; the bonus challenge below indicates that this is almost as unlikely as randomly running into
a factor of N).
Comment. There is nothing special about 2 here (you could also choose 3 or any other generic residue).

How many primes are there?

Theorem 101. (Euclid) There are infinitely many primes.

Proof. Assume (for contradiction) there are only finitely many primes: p1; p2; :::; pn.
Consider the number N = p1 � p2 � ::: � pn+1.
None of the pi divide N (because division of N by any pi leaves remainder 1).
Thus any prime dividing N is not on our list. Contradiction.
Just being silly. Similarly, there are infinitely many composite numbers.
Indeed, assume (for contradiction) there are only finitely many composites: m1;m2; :::;mn.
Consider the number N =m1 �m2 � ::: �mn (don't add 1).
N is not on our list. Contradiction.
Historical note. This is not necessarily a proof by contradiction, and Euclid (300BC) himself didn't state it as
such. Instead, one can think of it as a constructive machinery of producing more primes, starting from any finite
collection of primes. �

The following famous and deep result quantifies the infinitude of primes.

Theorem 102. (prime number theorem) Let �(x) be the number of primes 6 x. Then

lim
x!1

�(x)
x/ln(x)

= 1:

In other words: Up to x, there are roughly x/ln(x) many primes.
Examples.
Proportion of primes up to 106: 78; 498

106
= 7.85% vs the estimate 1

ln(106)
=

1

6ln(10)
= 7.24%

Proportion of primes up to 1012: 37; 607; 912; 018
1012 = 3.76% vs the estimate 1

ln(1012) =
1

12ln(10) = 3.62%

An example of huge relevance for crypto.
By the PNT, the proportion of primes up to 22048 is about 1

ln(22048)
=

1

2048 � ln(2) = 0.0704%.

That means, roughly, 1 in 1500 numbers of this magnitude are prime. That means we (i.e. our computer) can
efficiently generate large random primes by just repeatedly generating large random numbers and discarding those
that are not prime.
Comment. Here, ln(x) is the logarithm with base e. Isn't it wonderful how Euler's number e � 2.71828 is
sneaking up on the primes?
Historical comment. Despite progress by Chebyshev (who succeeded in 1852 in showing that the quotient in the
above limit is bounded, for large x, by constants close to 1), the PNT was not proved until 1896 by Hadamard
and, independently, de la Vallée Poussin, who both used new ideas due to Riemann.

Armin Straub
straub@southalabama.edu

36

Example 103. Playing with the prime number theorem in Sage:

Sage] prime_pi(10)

4

Sage] plot([prime_pi(x), x/ln(x)], 2, 200)

0 50 100 150 200

10

20

30

40

Sage] plot([prime_pi(x)/(x/ln(x)), 1], 2, 2000)

0 500 1000 1500 2000

0.4

0.6

0.8

1.0

1.2

Comment. As the final plot suggests, the quotient of �(x) and x/ ln(x) indeed approaches 1 from above. This
is slightly stronger than the PNT, which only claims that the quotient approaches 1.
In particular, as the previous plot suggests, for large x, x/ ln(x) is always an underestimate for �(x) (though
looking at a plot like this can be very misleading).

Armin Straub
straub@southalabama.edu

37

Sketch of Lecture 16 Mon, 2/19/2024

Review. If N is composite, then a residue a is a Fermat liar modulo N if aN¡1� 1 (modN).

Example 104. Using Sage, determine all numbers n up to 5000, for which 2 is a Fermat liar.
Sage] def is_fermat_liar(x, n):

return not is_prime(n) and power_mod(x, n-1, n) == 1

Sage] [n for n in [1..5000] if is_fermat_liar(2, n)]

[341; 561; 645; 1105; 1387; 1729; 1905; 2047; 2465; 2701; 2821; 3277; 4033; 4369; 4371; 4681]

Even if you have never written any code, you can surely figure out what's going on!
Heads-up! The improved primality test discussed today will reduce this list to just 2047; 3277; 4033; 4681.

The Miller�Rabin primality test

Review. The congruence x2� 1 (mod p) has only the solutions x��1.
By contrast, if n is composite (and odd), then x2� 1 (modn) has additional solutions.
The Miller�Rabin primality test exploits this difference to fix the issues of the Fermat primality test.

The Fermat primality test picks a and checks whether an¡1� 1 (modn).
� If an¡1�/ 1 (modn), then we are done because n is definitely not a prime.

� If an¡1� 1 (modn), then either n is prime or a is a Fermat liar.
But instead of leaving off here, we can dig a little deeper:

Note that a(n¡1)/2 satisfies x2�1 (modn). If n is prime, then x��1 so that a(n¡1)/2��1 (modn).

� Hence, if a(n¡1)/2�/ �1 (modn), then we again know for sure that n is not a prime.
Advanced comment. In fact, we can now factor n! See bonus challenge below.

� If a(n¡1)/2� 1 (modn) and n¡ 1
2

is divisible by 2, we continue and look at a(n¡1)/4 (modn).

¡ If a(n¡1)/4�/ �1 (modn), then n is not a prime.

¡ If a(n¡1)/4� 1 (modn) and n¡ 1
4

is divisible by 2, we continue:::

Write n¡ 1=2s �m with m odd. In conclusion, if n is a prime, then

am� 1 or, for some r=0; 1; :::; s¡ 1; a2
rm�¡1 (modn):

In other words, if n is a prime, then the values am; a2m; :::; a2
sm must be of the form 1; 1; :::; 1 or :::;¡1; 1;

1; :::; 1. If the values are of this form even though n is composite, then a is a strong liar modulo n.

This gives rise to the following improved primality test:

Miller�Rabin primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Write n¡ 1=2s �m with m odd.
Repeat k times:

Pick a random number a from f2; 3; :::; n¡ 2g.
If am�/ 1 (modn) and a2

rm�/ ¡1 (modn) for all r=0; 1; :::; s¡ 1, then
stop and output �not prime�.

Output �likely prime�.

Armin Straub
straub@southalabama.edu

38

Comment. If n is composite, then fewer than a quarter of the values for a can possibly be strong liars. In other
words, for all composite numbers, the odds that the Miller�Rabin test returns �likely prime� are less than 4¡k.
Comment. Note that, though it looks more involved, the Miller�Rabin test is essentially as fast as the Fermat
primality test (recall that, to compute an¡1, we proceed using binary exponentiation).
Advanced comments. This is usually implemented as a probabilistic test. However, assuming GRH (the gen-
eralized Riemann hypothesis), it becomes a deterministic algorithm if we check a=2; 3; :::; b2(logn)2c. This is
mostly of interest for theoretical applications. For instance, this then becomes a polynomial time algorithm for
checking whether a number is prime.
More recently, in 2002, the AKS primality test was devised. This test is polynomial time (without relying on
outstanding conjectures like GRH).

Example 105. Suppose we want to determine whether n = 221 is a prime. Simulate the
Miller�Rabin primality test for the choices a= 24, a= 38 and a= 47.
Solution. n¡ 1=4 � 55=2s �m with s=2 and m= 55.

� For a= 24, we compute am= 2455 � 80�/ �1 (mod221). We continue with a2m� 802� 212�/ ¡1,
and conclude that n is not a prime.
Note. We do not actually need to compute that an¡1 = a4m� 81, which features in the Fermat test
and which would also lead us to conclude that n is not prime.

� For a=38, we compute am=3855�64�/ �1 (mod221). We continue with a2m�642�118�/ ¡1 and
conclude that n is not a prime.
Note. This case is somewhat different from the previous in that 38 is a Fermat liar. Indeed, a4m�1182�
1 (mod221). This means that we have found a nontrivial sqareroot of 1. In this case, the Fermat test
would have failed us while the Miller�Rabin test succeeds.

� For a= 47, we compute am= 4755 � 174�/ �1 (mod221). We continue with a2m� 1742�¡1. We
conclude that n is a prime or a is a strong liar. In other words, we are not sure but are (incorrectly)
leaning towards thinking that 221 was likely a prime.

Comment. In this example, only 4 of the 218 residues 2; 3; :::; 219 are strong liars (namely 21; 47; 174; 200).
For comparison, there are 14 Fermat liars (namely 18; 21;38; 47; 64;86; 103; 118; 135; 157;174; 183; 200;203).
[Note that �1 are Fermat as well as strong liars, too. However, these are usually excluded when testing.]

Example 106. In Example 98, we saw that all �(561) = 320 invertible residues a modulo 561
are Fermat liars (that is, they all satisfy a560� 1 (mod 561)). How many strong liars are there?

Solution. There are 10 strong liars in total: �1;�50;�101;�103;�256.
In particular, only 8 of the 558 residues 2; 3; :::; 559 are strong liars. That's about 1.43% (much less than the
theoretic bound of 25%).

(bonus challenge) For which N < 1000 is the proportion of strong liars the highest?

Here (as illustrated in the case of 561 above) we define the proportion of strong liars to be the proportion of
residues among 2; 3; :::; N ¡ 2, which are strong liars.
[That proportion is almost 23%, just shy of the theoretical bound of 25%.]

Send in a solution by next week for a bonus point!

Armin Straub
straub@southalabama.edu

39

Extra excursion on Mersenne primes

Example 107. In 12/2018, a new largest (proven) prime was found: 282;589;933¡ 1.
https://www.mersenne.org/primes/?press=M82589933

This is a Mersenne prime (like the last 17 record primes). It has a bit over 24.8 million (decimal) digits (versus
23.2 for the previous record). The prime was found as part of GIMPS (Great Internet Mersenne Prime Search),
which offers a $3,000 award for each new Mersenne prime discovered.

The EFF (Electronic Frontier Foundation) is offering $150,000 (donated anonymously for that
specific purpose) for the discovery of the first prime with at least 100 million decimal digits.

https://www.eff.org/awards/coop

[Prizes of $50,000 and $100,000 for primes with 1 and 10 million digits have been claimed in 2000 and 2009.]

Definition 108. A Mersenne prime is a prime of the form 2n¡ 1.
For instance. The first few Mersenne primes have exponents 2; 3; 5; 7;13;17;19;31;61;89;107; ::: All of these
exponents are primes (but not all primes work: for instance, 211¡ 1= 23 � 89). See below.

Anecdote. Euler proved in 1772 that 231¡ 1 is prime (then, and until 1867, the largest known prime).
�231¡ 1 is probably the greatest [Mersenne prime] that ever will be discovered; for as they are merely curious,
without being useful, it is not likely that any person will attempt to find one beyond it.� � P. Barlow, 1811
https://en.wikipedia.org/wiki/2,147,483,647

Mersenne primes give rise precisely to all even perfect numbers (numbers whose proper divisors sum to the
number itself; for instance, 6 is perfect because 6= 1+ 2+ 3). Indeed, Euclid showed that, if 2p¡ 1 is prime,
then 2p¡1(2p¡ 1) is perfect [p=2: 2 � 3= 6, p=3: 4 � 7= 28=1+ 2+ 4+ 7+ 14, p=5: 16 � 33= 528, :::].
It is not known whether odd perfect numbers exist.

Example 109. (geometric sum) Evaluate 1+x+x2+ :::+xn.

Solution. (1+ x+x2+ :::+xn)(x¡ 1)= xn+1¡ 1, so that 1+ x+x2+ :::+xn=
xn+1¡ 1
x¡ 1 .

Geometric series. In particular,
X
k=1

1
xk= lim

n!1

xn+1¡ 1
x¡ 1 =

1
1¡ x , provided that jxj< 1.

Lemma 110. If r j n, then xr¡ 1 j xn¡ 1.
Proof. Indeed, we have xn¡ 1= (xr¡ 1)(1+xr+ x2r+ :::+xn¡r).
Comment. For a tiny bit more detail, write n= rs. It follows from xs¡ 1= (x¡ 1)(1+ x+ x2+ :::+ xs¡1)
that xrs¡ 1= (xr¡ 1)(1+ xr+x2r+ :::+ xr(s¡1)). �

Corollary 111. 2n¡ 1 can only be prime if n is prime.
Proof. It follows from the previous lemma that, if n= rs is composite, then 2n¡ 1 is divisible by 2r ¡ 1 (as
well as 2s¡ 1). �
For instance. 26¡ 1= 63 is divisible by both 22¡ 1=3 and 23¡ 1=7.

Armin Straub
straub@southalabama.edu

40

https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.mersenne.org/primes/?press=M82589933
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647
https://en.wikipedia.org/wiki/2,147,483,647

Sketch of Lecture 17 Wed, 2/21/2024

Example 112. (bonus challenge) If an¡1� 1 (mod n) but a(n¡1)/2�/ �1 (mod n), then we
can find a factor of n! How?!
For instance. a= 38 and n= 221 in Example 105.
Comment. However, note that this only happens if a is a Fermat liar modulo n, and these are typically very
rare. So, unfortunately, we have not discovered an efficient factorization algorithm. [But we have run into an
idea which is used for some of the best known factorization algorithms. If time permits, more on that later:::]

Send in a solution by next week for a bonus point!

Block ciphers (and DES in particular)

We now introduce block ciphers at the example of DES (short for data encryption standard).
This sketch only provides an overview but does not include all details. See Chapter 4 in our book for these
internals and detailed diagrams.

DES was the first public cryptosystem. While a public standard, the design decisions have been
kept secret.
1974: proposed by IBM (lead by Horst Feistel; Lucifer) with input from NSA (key size reduced from 128 to 56 bits)

1976�2000: US national standard (broken by exhaustive search in 1997)
2000: replaced with AES (Rijndael) by NIST; however, 3DES still considered secure (more later)
Why was the design secret? For many years, a particular mystery about DES was the choice of the S-boxes.
Much later, in 1990, Biham and Shamir discovered differential cryptanalysis, a general method for breaking
block ciphers. Surprisingly, it turned out that the particular choice of S-boxes made DES rather resistant against
that attack. Indeed, as confirmed later, the IBM researchers had already discovered and anticipated that attack,
but were asked by the NSA to keep it secret (it was a powerful weapon against other cryptosystems).
https://en.wikipedia.org/wiki/Data_Encryption_Standard

Comment. As our discussion will show, DES was designed to be implemented in hardware.

General principles of block cipher design

A block cipher takes a plaintext block of, say, B bits and encrypts it into a ciphertext block of
B bits.
For instance, for DES, B= 64: 64 bit blocks are encrypted to 64 bit blocks.

For now, we will just focus on encrypting a single block.
However, we will need to talk about how to use a block cipher to encrypt longer plaintexts that need to be broken
into many blocks (it is generally a bad idea to individually and independently encrypt each block).

The design of a block cipher is almost an art, but there are two guiding principles due to Claude
Shannon, the father of information theory:

� confusion
refers to making the relationship between the ciphertext and the key as complex and involved as possible
(for instance, changing one bit of the key should change the ciphertext completely)
For instance. In DES, confusion is increased by the S-box substitutions. These are the only nonlinear part of
DES. Without them, DES would be easily broken with linear algebra.

� diffusion
refers to dissipating the statistical structure of plaintext over the bulk of ciphertext
(for instance, changing one bit of the plaintext should change the ciphertext completely; likewise, changing
one bit of the ciphertext should change the plaintext completely)
For instance. In DES, diffusion is increased by the E-box and P-box permutations.

Armin Straub
straub@southalabama.edu

41

https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard

Example 113. The classical substitution cipher provides only confusion.
Diffusion is completely missing. Changing bits of the plaintext only changes corresponding parts of the ciphertext.
That's why frequency analysis can break these ciphers so easily.

Typical block ciphers are built by iteration, and consist of several rounds. Each round should have
steps to increase both confusion and diffusion.

� (key expansion) First, we need to expand key k into several round keys k1; k2; :::; kn (n rounds).
For instance. For DES, each round key ki has 48 bits, which are drawn from the 56 bit DES key k in
such a way that each bit of k shows up in about 14 of the 16 rounds.

� (round functions) Then, the message m is encrypted successively with Rk1, Rk2, :::, Rkn to obtain c in
the end.

m! Rk1 ! Rk2 ! :::! Rkn ! c

Each Rk is called a round function.
For instance. For DES, there are n= 16 rounds; for AES-128, there are n= 10 rounds

A specific block cipher now needs specific algorithms for key expansion and round functions.

For DES, 16 rounds are used, which are identical in functionality but use different round keys ki.
There is one additional, cryptographically irrelevant, step for DES: namely, there is a (fixed) initial permutation
IP, which shuffles the bits of m before being sent to Rk1. Similarly, the output of Rk16 is shuffled with IP¡1,
the inverse permutation, to produce c. (For the exact permutation see Chapter 4.4 in our book.)
Why? When implemented in hardware, this permutation does not cost any work, since it is just a wiring of the
bits. In fact, the permutation somehow simplified the electrical engineering in the chips of the 70s.

A block cipher design: Feistel ciphers

Many ciphers, including DES (but not AES) are Feistel ciphers. This means that the encryption
functions Rki are of a special format. The crucial ingredient is a round function fki(x).
This round function can be any function, such that x and fki(x) have the same size in bits (though only good
choices will provide security). Also, several different round functions can be used for the different rounds.

To encrypt m using Rki (for DES, m is 64 bits and the round key ki is 48 bits):

� Split the plaintext m into two halves (L0; R0) (for DES, each half is 32 bits).

� L1=R0

R1=L0� fki(R0)

� Then, Rki(m) is (L1; R1).

Example 114. How to decrypt one round? That is, how to obtain (L0; R0) from (L1; R1)?
Solution. First, R0=L1. Then, L0=R1� fki(R0).
Important comment. In particular, we can take any round function f in the sense that we obtain some cipher,
which can actually be decrypted (however, most choices for f will be insecure; see example below).
Comment. In hardware, the circuit for decryption is the same as for encryption, just reversed.

Example 115. What happens if we choose fki(R)= 0 as the round function?

Solution. In that case, we are just swapping left and right half. No security whatsoever.

To finish the description of DES, we need to specify fki(R), where R is 32 bits and ki is 48 bits.

Armin Straub
straub@southalabama.edu

42

We did that in class, but do not reproduce the description and diagrams here. See Chapter 4.4 of our book.
The crucial ingredients are:

� an E-box (expansion; expands 32 input bits into 48 output bits by repeating some),

� eight S-boxes (substitution; lookup tables that for each 6 bit input specify a 4 bit output),

� and a P-box (permutation; permutes 32 input bits to produce 32 output bits).

Further comments on DES

The S-boxes S1; S2; :::; S8 are lookup tables (for each 6 bit input, they specify a 4 bit output).

� They have been carefully designed.
For instance, their design already anticipated and protected against differential cryptanalysis (which wasn't
publicly known at the time).

� On the other hand, they do not follow any simple rule. In particular, they must not be linear (or close to
it). If they were, DES would be entirely insecure.
[Slightly more specifically, if the S-boxes were linear, then the encryption map m 7! c would be linear. In
the usual spirit of linear algebra, a few (m; c) pairs would then suffice to recover the key.]

� They are also designed so that if one bit is changed in the input, then at least 2 bits of the output change.
Important consequence. Go through one application of the round function fki(R), and convince yourself
that flipping one bit of R has the effect of flipping at least two bits of fki(R). Repeating this for 16
rounds, you can see how the goal of diffusion seems to be achieved: changing one bit of the plaintext
should change the ciphertext completely.

Example 116. Sometimes it is stated that DES works with a 64 bit key size. In that case, every
8th bit is a parity bit, but the algorithm really operates with 56 bit keys.
Comment. Apparently, the NSA was interested in strengthening DES against any attack (recall that develop-
ments like differential cryptanalysis were foreseen) except brute-force. Indeed, the NSA seems to have pushed
for a key size of 48 bits versus proposed 64 bits, and the result was a compromise for 56 bits.

Example 117. If DES is insecure because of its 56 bit key size, why not just increase that?
Solution. DES was designed specifically for that key size. Increasing it necessitates a completely new analysis
on how to choose the S-boxes and so on.
On the other hand. See the upcoming discussion of 3DES for how to leverage the original DES to increase the
key size.
However. With the advent of powerful successors like AES there are very few reasons to use 3DES for new
cryptosystems. (One slight advantage of 3DES is its particularly small footprint in hardware implementations.)

Example 118. Can we (easily) break DES if we know one of the round keys?

Solution. Absolutely! Recall that each round key consists of 48 bits taken from the overall 56 bit DES key.
Hence, we know all but 8 bits of the key. We just need to brute-force these 28= 256 many possibilities.

Armin Straub
straub@southalabama.edu

43

Sketch of Lecture 18 Fri, 2/23/2024

Example 119. To (naively) brute-force DES, how much data must we encrypt?
Solution. By brute-forcing, we mean that, given a pair of 64-bit blocks m;c, we go through all 256 possibilities
(DES uses 56-bit keys) for k and look for k such that Ek(m)= c? We need to encrypt 256 times 64 bits.
This is 256 � 8=259 byte, or 512 pebibyte (binary analog of petabyte) or 576 petabyte (since 259�5.76 �1017).
How long will this take? Of course, this depends on your machine. Assume we are able to encrypt 1 GB/sec.
Then, this will take us about 5.76 � 108 sec, or about 18.3 years.
Of course, such a brute-force attack can be fully parallelized to quickly bring this number down to less than an
hour for a powerful attacker. Also, the attack can be sped up considerably by careful design (like early aborts).
For comparison. Though mostly of theoretical value, for DES, some possibilities for attacks better than brute-
force are known: for instance, as of 2008, linear cryptanalysis can mount an attack with 243 known plaintexts in
about 240 (instead of 256) steps.

Example 120. (bonus challenge) Using DES, are there blocks m; c such that Ek(m) = c for
more than one key k?
This would mean that, using just a single plaintext-ciphertext pair, the above brute-forcing might uncover more
than one possible key.
[I don't know the answer (but expect that it is �yes�) and couldn't find it easily. Maybe you are more skilled?]

Example 121. (3DES) A simple approach to increasing the key size of DES, without the need
to design and analyze a new block cipher, is 3DES. It consists of three applications of DES to
each block and is still considered secure.

c=Ek3(Dk2(Ek1(m)))

The 3DES standard allows three keying options:
� k1; k2; k3 independent keys: 3� 56= 168 key size, but effective key size is 112

� k1= k3: 2� 56= 112 key size, effective key size is stated as 80 by NIST

� k1= k2= k3: this is just the usual DES, and provides backwards compatibility (which is a major reason
for making the middle step a decryption instead of another encryption).

Comment. The reason for the reduced effective key sizes is the meet-in-the-middle attack. It is also the reason
why something like 2DES is not used. See next example!
Comment. NIST approved 3DES until 2030 for sensitive government data.

Example 122. (no 2DES) Explain why �2DES� does not really provide extra security over DES.
Solution. Let's denote DES encryption with Ek and decryption with Dk. The keys k are 56 bits.
Then, 2DES encrypts according to c=Ek2(Ek1(m)). The key size of 2DES is 56+ 56= 112 bits.

� A brute-force attack would go through all possibilities for pairs (k1; k2), of which there are 256 �256=2112,
to check whether c=Ek2(Ek1(m)). That requires 2

112 2DES computations.

� On the other hand, note that c=Ek2(Ek1(m)) is equivalent to Dk2(c)=Ek1(m).
Assuming sufficient memory, we first go through all 256 keys k2 and store the values Dk2(c) in a lookup
table.
We then go through all 256 keys k1, compute Ek1(m) and see if we have stored that value before. (Even
though this is a huge table, the cost for checking whether an element is in the table can be disregarded;
thanks to the magic of hash tables!)
Comment. In this second step, we see that m and c should be more than one block (otherwise we get
too many candidate keys k=(k1; k2)).
The total number of DES computations to break 2DES therefore is 256+256=257, which is hardly more
than for breaking DES!

Armin Straub
straub@southalabama.edu

44

This is known as a meet-in-the-middle attack.
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack

Comment. The price to pay is that this attack also requires memory for storing This sort of approach is referred
to as a time-memory trade-off. Instead of brute-forcing 2DES in 2112 steps, we can attack it in 257 steps while
storing 256 values of the size of m.
Comment. This applies to any block cipher, not just DES!
Comment. For some block ciphers it is the case that for all pairs of keys k1; k2, there is a third key k3 such that
Ek2(Ek1(m)) =Ek3(m). In that case, we say that the cipher is a group, and double (or triple, or quadruple)
encryption does not add any additional security! DES, however, is not a group.

Example 123. Explain why 3DES, used with three different keys, only has effective key size 112.
Solution. (fill in the details!) Instead of going through all k1; k2; k3 to check whether

c=Ek3(Dk2(Ek1(m)))

(which would take 256 � 256 � 256=2168 DES computations), we can use that the latter is equivalent to

Dk3(c)=Dk2(Ek1(m)):

Now proceed as in the previous example ::: to see that we can break 3DES with �2112 DES computations. How
much memory do we need?

Example 124. (extra; use as PRG) ANSI X9.17 is a U.S. federal standard for a PRG based on
3DES.
Input: random, secret 64 bit seed s, key k for 3DES (keying option 2)
Produce a random number as follows:

� obtain current time D, compute t=3DESk(D)

� output x=3DESk(s� t) (that's the pseudo-random output)

� update the seed to s=3DESk(x� t) for future use

Comment. ANSI (American National Standards Institute) X9 are standards for the financial industry.
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Comment. The same approach can be applied to any block cipher.
Comment. It is common practice to add in time for PRGs that are used to generate enormous amounts of data.
If nothing else, it slightly increases the entropy and reduces the likelihood of �short� periods.

Example 125. (extra; DES-X) To increase the key size of DES, the following variation, known
as DES-X, was proposed by Ron Rivest in 1984:

c= k3�DESk2(m� k1)

What is the key size of DES-X? What about the effective key size?
Solution. k1 and k3 are 64 bit, while k2 is 56 bits. That's a total key size of 184 bits for DES-X.
However, just like for 3DES, proceeding as in a meet-in-the-middle-attack (without the need of much storage)
reduces the effective key size to at most 184¡ 64= 120 bits.
Comment. This approach of xoring with a subkey before and after everything else is known as key whitening.
This features in many modern ciphers, including AES.
https://en.wikipedia.org/wiki/DES-X

Armin Straub
straub@southalabama.edu

45

https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X
https://en.wikipedia.org/wiki/DES-X

Sketch of Lecture 19 Mon, 2/26/2024

Block cipher modes

Block ciphers encrypt blocks of a specified size (64 bit for DES, or 128 bit for AES). Block cipher
modes specify how to encrypt larger plaintexts.

Let Ek be the encryption routine of a block cipher with block size n bit. As a first step, we split
a plaintext m into blocks m=m1m2m3::: such that each mi is n bits (we may have to pad).

Example 126. (ECB, shouldn't be used) In the simplest mode, known as electronic codebook,
we just encrypt each plaintext block individually:

cj=Ek(mj)

The ciphertext is c= c1c2c3:::. Decryption simply computes Dk(cj)=mj.

Though natural, ECB has several severe weaknesses. Can you think of some?
Solution. Using ECB is nothing else but a classical substitution cipher, except that ECB operates on larger
blocks. Just like a classical substitution cipher is vulnerable to frequency attacks, ECB leaves patterns in the
ciphertext. For a striking visual example when encrypting a picture, see:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

If a block repeats later in the message (or in a later message), it will be encrypted the same way. Hence, Eve
can notice such repetitions. This is problematic in practice, for instance, because certain files always begin with
the same blocks, so that Eve has a good chance of detecting the file type.
Also, knowing the filetype, Eve might be able to rearrange the ciphertext blocks to adjust the message. She can
also attempt to delete certain ciphertext blocks.
Conclusion. Unless you know exactly why (e.g. sending already randomized messages), you should not use ECB.

Example 127. (CBC) In cipherblock chaining mode, we encrypt each plaintext block after
chaining it with the previous cipherblock; that is:

cj=Ek(mj� cj¡1)

In order to do that for j=1, we need a value for c0, known as an initialization vector IV.

The ciphertext is c= c0c1c2c3::: (that's one more block than for the plaintext m=m1m2m3:::).

(a) How does decryption work?

(b) Why should the value IV be unpredictable (e.g. be chosen randomly)?

Solution.

(a) Since cj=Ek(mj� cj¡1), we have Dk(cj)=mj� cj¡1 or mj=Dk(cj)� cj¡1.
For instance. m1=Dk(c1)� c0

(b) The value IV should be unique, so that messages starting with the same plaintext block have different
ciphertext blocks. More generally, it should be unpredictable so that Eve cannot mount a chosen-plaintext
attack to test if an earlier plaintext equals her guess. See Example 129.

Just checking. What would happen if we set cj=Ek(mj)� cj¡1 instead?
[In that case, we would gain nothing over ECB: since Eve knows all cj, she can compute cj� cj¡1=Ek(mj).]
Comment. CBC makes random access possible during decryption (but not encryption). That means, we don't
need to decrypt c= c0c1c2c3::: sequentially but can directly decrypt cNcN+1::: for some random N .

Armin Straub
straub@southalabama.edu

46

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Example 128. Consider the (silly) block cipher with 4 bit block size and 4 bit key size such that

Ek(b1b2b3b4)= (b2b3b4b1)� k:

(a) Encrypt m=(0000 1011 0000 :::)2 using k=(1111)2 and ECB mode.

(b) Encrypt m=(0000 1011 0000 :::)2 using k=(1111)2 and CBC mode (IV=(0011)2).

Solution. m=m1m2m3::: with m1= 0000, m2= 1011 and m3= 0000.

(a) c1=Ek(m1)= 0000� 1111= 1111
c2=Ek(m2)= 0111� 1111= 1000
Since m3=m1, we have c3= c1. Hence, the ciphertext is c= c1c2c3:::=(1111 1000 1111 :::).

(b) c0= 0011
c1=Ek(m1� c0)=Ek(0000� 0011)=Ek(0011)= 0110� 1111= 1001
c2=Ek(m2� c1)=Ek(1011� 1001)=Ek(0010)= 0100� 1111= 1011
c3=Ek(m3� c2)=Ek(0000� 1011)=Ek(1011)= 0111� 1111= 1000
Hence, the ciphertext is c= c0c1c2c3:::=(0011 1001 1011 1000 :::).

Comment. Clearly, our cipher is not meant to be secure. One damning issue (besides the short key and block
size) is that it is linear (in both the plaintext and the key).
Extra. In each case, can you decrypt c to get back the original m?

Example 129. (BEAST attack) BEAST is short for Browser Exploit Against SSL/TLS and was
brought to public attention in 2011. The attack is based on the fact that the IV used by SSL was
obtained from a previous ciphertext block (instead of randomly!):

Scenario. Imagine that plaintext blocks m1m2::: are continuously being encrypted using CBC to cipherblocks.
However, the plaintexts are from different parties and Eve can ask for her own plaintexts to be encrypted along
the way.
In such a scenario, different plaintexts should be separately encrypted using CBC, meaning that a new random
IV should be chosen each time.

Eve's goal. Suppose Eve has observed the ciphertext blocks cj¡1; cj and her goal is to find out whether mj=x
where x is her educated guess. Obviously, this is something that Eve should not be able to do!
The exploit. Because the IV for the next encryption is cj, and because Eve can interject plaintext blocks to be
encrypted for her, she can ask for mj+1= x� cj¡1� cj (these are all known to Eve!) to be encrypted next.
Because CBC with IV cj is used, this results in cj+1=Ek(mj+1� cj)=Ek(x� cj¡1).
Eve can now compare this with Ek(mj� cj¡1)= cj (which she knows!) to find out whether mj=x.

https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack

There exist many other modes, including modes which already include features like authentication.
Other common basic modes such as OFB (output feedback) or CTR (counter) turn the block
cipher into a stream cipher (one advantage of that is that we don't need to encrypt full blocks at
a time).

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Comment. One issue of ECB and CBC is the need for padding. If not handled properly, this can be exploited
by a padding oracle attack:
https://en.wikipedia.org/wiki/Padding_oracle_attack

Armin Straub
straub@southalabama.edu

47

https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack

Sketch of Lecture 20 Wed, 2/28/2024

Example 130. (bonus challenge!) Find the smallest (pseudo)prime with 100 decimal digits, all
of which are 3 or 7.
(Send me an email by next week with the prime, and how you found it, to collect a bonus point. Earn an extra
bonus point if you can find it using a single line of Sage code [artificial concatenations not allowed].)

AES

Finite fields

Example 131. We have already seen xor in several cryptosystems. Note that a single xor operation
as in the one-time pad or stream ciphers provides no diffusion.
When designing a cipher it may be nice to replace xor of N bit blocks with an operation that
does provide some diffusion.

� A tiny amount of diffusion is provided by instead using addition modulo 2N.
Due to carries, one bit flip in the input can propagate to more than one bit flipped in the output.

� More diffusion can be achieved using operations (multiplication/inversion) in finite fields like GF(2N).
[We only need to make sure in our design that we don't multiply with zero.]

A field is a set of elements which can be added/subtracted as well as multiplied/divided by
according to the usual rules.
In particular, a field always has distinguished elements 0 and 1, which are the neutral elements with respect to
addition and multiplication, respectively.

Example 132.
� The rational numbers Q, the real numbers R, and the complex numbers C all are fields, which you have

seen before. They contain infinitely many elements.

� The integers Z are not a field because, for instance, 3 is not invertible (since 1

3
is not an integer itself).

Quotients of integers (rational numbers!) are a field.
Since addition/subtraction and multiplication work as they should, Z is what is called a ring.

� Polynomials are not a field (they are a ring like Z). Quotients of polynomials (rational functions!) are a field.

Cryptographic applications require finite structures. Correspondingly, our focus will be on finite
fields, that is, fields consisting of only a finite number of elements.

Example 133. Let p be a prime. The residues modulo p form a field, often denoted as GF(p).
GF is short for Galois field, which is another word for finite field.
Note that we can divide by any element! (Except the zero residue but, of course, we can never divide by 0.)

Example 134. The residues modulo 21 (or any other composite number) are not a field.
We can add/subtract and multiply these numbers, but we cannot always divide. Specifically, we cannot divide
by elements like 3; 6; 7; ::: even though these are nonzero (we can, of course, never divide by zero).
Note. We have already seen that this seemingly slight deficiency has �terrible� consequences. For instance, the
quadratic equation x2=1 has more than the two solutions x=�1 modulo 21 (namely, �8 as well).

AES is built upon byte operations (in contrast to DES, which is built on bit operations). Each of
the 28 bytes represents one of the 28 elements of the finite field GF(28).
Note. We do not yet know what GF(28) is. It cannot be the residues modulo 28, because we just observed that
the residues modulo n are a field only if n is prime.

Armin Straub
straub@southalabama.edu

48

To construct the finite field GF(pn) of pn elements, we can do the following:

� Fix a polynomial m(x) of degree n, which is irreducible modulo p (i.e. cannot be factored modulo p).

� The elements of GF(pn) are polynomials modulo m(x) modulo p.

We will discuss the irreducibility condition on m(x) next time. For now, see Example 137.
Comment. Actually, all finite fields can be constructed in this fashion. Moreover, choosing different m(x) to
construct GF(pn) does not really matter: the resulting fields are always isomorphic (i.e. work in the same way,
although the elements are represented differently). That justifies writing down GF(pn), since there is exactly
one such field.

Example 135. AES is based on representing bytes as elements of the field GF(28). It is con-
structed using the polynomial x8+x4+x3+x+1 (which is indeed irreducible mod 2).
From bits to polynomials. For instance, the polynomial x7+ x4+ x corresponds to the bits 10010010 while
x6+1 corresponds to 01000001.

Example 136. The polynomial x2+x+1 is irreducible modulo 2, so we can use it to construct
the finite field GF(22) with 4 elements.

(a) List all 4 elements, and make an addition table. Then realize that this is just xor.

(b) Make a multiplication table.

(c) What is the inverse of x+1?

Solution.

(a) The four elements are 0; 1; x; x+1.
For instance, (x+1)+x=2x+1=1 (inGF(22), since we are working modulo 2). The full table is below.
Each of the four elements is of the form ax + b, which can be represented using the two bits ab (for
instance, (10)2 represents x and (11)2 represents x+1).
Then, addition of elements ax+ b in GF(22) works in the same way as xoring bits ab.

(b) For instance, (x+1)2= x2+2x+1�x2+1� (x+1)+1�x.
Here, the key is to realize that reducing modulo x2 + x + 1 is the same as saying that x2 = ¡x ¡ 1,
i.e. x2 = x + 1 in GF(22). That means all polynomials of degree 2 and higher can be reduced to
polynomials of degree less than 2.

+ 0 1 x x+1
0 0 1 x x+1
1 1 0 x+1 x
x x x+1 0 1
x+1 x+1 x 1 0

� 0 1 x x+1
0 0 0 0 0
1 0 1 x x+1
x 0 x x+1 1
x+1 0 x+1 1 x

(c) We are looking for an element y such that y(x+ 1) = 1 in GF(22). Looking at the table, we see that
y= x has that property. Hence, (x+1)¡1=x in GF(22).

Example 137. What if we proceed as in the previous example but used m(x)=x2+1 instead?

Solution. The addition table would be the same. The multiplication table would be different and a crucial
difference would be that (x+1) � (x+1)=x2+2x+1�x2+1�0, which implies that x+1 cannot be invertible.
That means our construction is not a field.
Comment. Note how, here, m(x) factors modulo 2 as x2 + 1 � (x + 1)(x + 1). Hence the condition of
irreducibility in the construction of GF(pn) is violated.

Armin Straub
straub@southalabama.edu

49

Sketch of Lecture 21 Fri, 3/1/2024

Review. GF(pn) is �the� finite field with pn elements.

Recall that, in the construction of GF(pn), the polynomial m(x) has to be such that it cannot
be factored modulo p. We also require that m(x) needs to be irreducible mod p.
For instance. The polynomial x2+2x+1 can always be factored as (x+1)2.
On the other hand. For the polynomials m(x)=x2+ x+1 things are more interesting:

� x2+x+1 cannot be factored over Q because the roots ¡1� ¡3
p

2
are not rational.

� However, x2+x+1� (x+2)2 modulo 3, so it can be factored modulo 3.

� On the other hand, x2 + x + 1 is irreducible modulo 2 (that is, it cannot be factored: the only linear
factors are x and x+1, but x2, x(x+1) and (x+1)2 are all different from x2+x+1 modulo 2).

In general, it follows from the formula ¡1� ¡3
p

2
for the roots that x2+x+1 can be factored modulo a prime

p > 2 if and only if ¡3
p

exists as a residue modulo p. In other words, if and only if ¡3 is a quadratic residue
modulo p.

For instance. Modulo p=7, we have ¡3� 22 and 1

2
� 4, so that ¡1� ¡3

p

2
� 4 � (¡1� 2)� 2; 4. Indeed, we

have the factorization (x¡ 2)(x¡ 4)= x2¡ 6x+8� x2+ x+1 modulo 7.

Example 138. The polynomial x3+x+1 is irreducible modulo 2, so we can use it to construct
the finite field GF(23) with 8 elements.

(a) List all 8 elements.

(b) Reduce x5+1 in GF(23).

(c) Multiply each element of GF(23) with x2+x.

(d) What is the inverse of x2+x in GF(23)?

Solution.

(a) The elements are 0; 1; x; x+1; x2; x2+1; x2+ x; x2+ x+1.
[Note that x3=¡x¡ 1= x+ 1 in GF(23). That means all polynomials of degree 3 and higher can be
reduced to polynomials of degree less than 3. See next part.]

(b) We divide x5+1 by x3+x+1 (long division!) to find x5+1=(x2¡ 1)(x3+x+1)+ (¡x2+x+2).

It follows that x5+1 reduces to ¡x2+x+2� x2+x in GF(23).
Important. We can simplify things by performing the long division modulo 2. We then find x5 + 1 �
(x2+1)(x3+ x+1)+ (x2+x).

(c) We multiply the polynomials as usual, then reduce as in the previous part.
For instance, (x2+ x)(x2+ x+ 1)� x4+ x and, by long division, x4+ x� x(x3+ x+ 1)+ x2, which
reduces to just x2 in GF(23).

� 0 1 x x+1 x2 x2+1 x2+ x x2+ x+1

x2+ x 0 x2+x x2+ x+1 1 x2+1 x+1 x x2

(d) We are looking for an element y such that y(x2+ x) = 1 in GF(23). Looking at the table, we see that
y= x+1 has that property. Hence, (x2+x)¡1=x+1 in GF(23).
Important. To find the inverse, we essentially tried all possibilities. That's not sustainable. Instead, we
can (and should!) proceed as we did for computing the inverse of residues modulo n. That is, we should
use the Euclidean algorithm as indicated in the next examples. Here, this is just one step: modulo 2, we
have x3+x+1 � (x+1) � x2+x +1, so that (x2+x)¡1=x+1 in GF(23).

Armin Straub
straub@southalabama.edu

50

The (extended) Euclidean algorithm with polynomials

Example 139.

(a) Apply the extended Euclidean algorithm to find the gcd of x2 + 1 and x4 + x + 1, and
spell out Bezout's identity.

(b) Repeat the previous computation but always reduce all coefficients modulo 2.

(c) What is the inverse of x2+1 in GF(24)? Here, GF(24) is constructed using x4+x+1.

Solution.

(a) We use the extended Euclidean algorithm:

gcd (x2+1; x4+x+1) x4+ x+1 =(x2¡ 1) � x2+1 +(x+2)

= gcd(x+2; x2+1) x2+1 = (x¡ 2) � x+2 +5

Backtracking through this, we find that Bézout's identity takes the form

5 = 1 � x2+1 ¡ (x¡ 2) � x+2 = 1 � x2+1 ¡ (x¡ 2) �
¡
x4+ x+1 ¡ (x2¡ 1) � x2+1

�
= (x3¡ 2x2¡x+3) � x2+1 ¡ (x¡ 2) � x4+x+1

If we wanted to, we could divide both sides by 5.

(b) We repeat the exact same computation but reduce modulo 2 at each step:

x4+x+1 � (x2+1) � x2+1 +x

x2+1 � x � x +1

Backtracking through this, we find that Bézout's identity takes the form

1 = 1 � x2+1 + x � x = 1 � x2+1 + x �
¡
x4+ x+1 +(x2+1) � x2+1

�
= (x3+ x+1) � x2+1 +x � x4+ x+1

(c) We can now read off that (x2+1)¡1=x3+x+1 in GF(24).

Example 140. (HW) Find the inverses of x2+1 and x3+1 in GF(28), constructed as in AES.

Solution. Recall that for AES, GF(28) is constructed using x8+x4+x3+x+1.

(a) We use the extended Euclidean algorithm for polynomials, and reduce all coefficients modulo 2:

x8+x4+x3+ x+1 � (x6+x4+ x) � x2+1 +1

Hence, (x2+1)¡1= x6+ x4+ x in GF(28).

(b) We use the extended Euclidean algorithm, and always reduce modulo 2:

x8+x4+x3+x+1 � (x5+x2+ x+1) � x3+1 + x2

x3+1 � x � x2 +1

Backtracking through this, we find that Bézout's identity takes the form

1 � 1 � x3+1 ¡x � x2 � 1 � x3+1 ¡x �
¡
x8+x4+x3+x+1 ¡ (x5+x2+x+1) � x3+1

�
� (x6+x3+x2+ x+1) � x3+1 + x � x8+ x4+ x3+ x+1 :

Hence, (x3+1)¡1= x6+ x3+ x2+ x+1 in GF(28).

Armin Straub
straub@southalabama.edu

51

Sketch of Lecture 22 Mon, 3/11/2024

Basics of AES

The block cipher AES (short for advanced encryption standard) replaced DES. By now, it is
the most important symmetric block cipher.
1997: NIST requests proposals for AES (receives 15 submissions) [very different from how DES was selected!]

2000: Rijndael (by Joan Daemen and Vincent Rijmen) selected (from 5 finalists)
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

� 128 bit block size (as per NIST request)

� The key size of AES can be 128, 192 or 256 bit. The corresponding choices are referred to as AES-128,
AES-192 and AES-256, and have 10, 12 and 14 rounds, respectively.

� AES-192/256 is first (and only) public cipher allowed by NSA for top secret information.

� No known attacks on AES which are substantially better than brute-force.

Attacks better than brute-force known if the number of rounds was 6 (instead of 10) for AES-128.

� Unlike DES, AES is not a Feistel network.

While for a Feistel network, each round only encrypts half of the bits, all bits are being encrypted during each round. That's one
indication why AES requires fewer rounds than DES.

Internals of AES

Each round consists of 4 layers. Each layer takes 128 bits input and outputs 128 bits in a reversible
way (so that we can decrypt as long as we know the key).The 128 bit state consists of 16 bytes.
These 16 bytes c0;0; c1;0; c2;0; c3;0; c0;1; :::; c3;3 are often arranged in a 4x4 matrix as26666664

c0;0 c0;1 c0;2 c0;3
c1;0 c1;1 c1;2 c1;3
c2;0 c2;1 c2;2 c2;3
c3;0 c3;1 c3;2 c3;3

37777775:
Each byte is identified with an element of GF(28).

Example 141. (0000 0101)2 represents the element x2+1 in GF(28).

The 4 layers are:

� ByteSub
each byte gets substituted with another byte (like a single S-box in DES); provides confusion and
guarantees non-linearity of AES

� ShiftRow
the 16 bytes are permuted (like a P-box in DES but on bytes, not bits); provides diffusion

� MixCol
the 4x4 matrix is linearly transformed; provides diffusion

� AddRoundKey
the state is xored with a 128 bit round key

Armin Straub
straub@southalabama.edu

52

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

Slight deviations. Before the first round, AddRoundKey is applied with the 0th round key (which equals the
AES key). Otherwise, our first step would be ByteSub, which wouldn't have any cryptographic effect since the
plaintext bytes would just be changed in a fixed manner (no key involved yet).
Also, the last round has no MixCol layer. This has the effect that decryption can be made to look very much
like encryption (see Section 5.3 in our book for the details).

ShiftRow

The layer ShiftRow permutes the 16 bytes c0;0; c1;0; c2;0; c3;0; c0;1; :::; c3;3 as follows:26666664
c0;0 c0;1 c0;2 c0;3
c1;0 c1;1 c1;2 c1;3
c2;0 c2;1 c2;2 c2;3
c3;0 c3;1 c3;2 c3;3

37777775 7!
26666664
c0;0 c0;1 c0;2 c0;3
c1;1 c1;2 c1;3 c1;0
c2;2 c2;3 c2;0 c2;1
c3;3 c3;0 c3;1 c3;2

37777775

MixCol

Again, arrange the 16 bytes as a 4�4 matrix with entries in GF(28). The MixCol layer transform
this 4� 4 matrix by multiplying it with another, fixed, 4� 4 matrix:26666664

c0;0 c0;1 c0;2 c0;3
c1;0 c1;1 c1;2 c1;3
c2;0 c2;1 c2;2 c2;3
c3;0 c3;1 c3;2 c3;3

377777757!
266664

x x+1 1 1
1 x x+1 1
1 1 x x+1

x+1 1 1 x

377775
26666664
c0;0 c0;1 c0;2 c0;3
c1;0 c1;1 c1;2 c1;3
c2;0 c2;1 c2;2 c2;3
c3;0 c3;1 c3;2 c3;3

37777775

Example 142. For instance, the new byte at the position of c2;1 (third row, second col) is

[1 1 x x+1]

26666664
c0;1
c1;1
c2;1
c3;1

37777775= c0;1+ c1;1+xc2;1+(x+1)c3;1;

where all computations are to be done in GF(28).

Armin Straub
straub@southalabama.edu

53

AddRoundKey

The AddRoundKey layer simply xors the current 128 bit state with a 128 bit round key.

The key schedule for AES-128 is as follows. Like for the states, arrange the original 16 byte AES
key k in a 4� 4 matrix with columns W (0);W (1);W (2);W (3).
The ith round key is then obtained from the matrix with columns W (4i);W (4i+1);W (4i+2);
W (4i+3), where W (4);W (5); ::: are recursively constructed:

W (i)=

(
W (i¡ 4)+W (i¡ 1); if 4 - i;
W (i¡ 4)+W~ (i¡ 1); if 4ji:

Here, W~ (i¡ 1) is obtained from W (i¡ 1) as follows:

W (i¡ 1)=

266664
w1
w2
w3
w4

377775 =) W~ (i¡ 1)=

26666664
S(w1)+x(i¡4)/4

S(w2)
S(w3)
S(w4)

37777775:
Note that w1; w2; w3; w4 each are bytes. The function S is the ByteSub substitution. Since that substitution is
nonlinear, the round keys are constructed from k in a nonlinear manner (unlike in DES).
As usual, the computation S(w1)+x(i¡4)/4 happens in GF(28).

ByteSub

The ByteSub layer takes each of the 16 bytes y and replaces it with the byte S(y). As in DES,
we could simply describe the (invertible) map by a lookup table. However, like the other steps of
AES, it has a very simple mathematical description which we'll discuss next time.
Comment. As for the S-boxes in DES, ByteSub can be implemented in hardware as a lookup table. Since we
have 28= 256 inputs, with 1 byte of output each, this table is 256 bytes large. (See Table 5.1 in our book.)
For comparison, each of the eight S-boxes in DES occupies 26 times 4 bits, which is 32 bytes. In total, these
are also 256 bytes.
[In contrast to DES it is the case (and necessary for decryption!) that different inputs have different outputs.]

Example 143. (bonus!) p= 29137 is an example of a left-truncatable prime: the number itself
as well as all truncations 9137, 137, 37, 7 are prime. By simply exhausting all possibilities (start
with a single digit and keep adding (nonzero) digits on the left until no choice results in a prime),
we find that there is a largest left-truncatable prime, namely, 357686312646216567629137.
https://www.youtube.com/watch?v=azL5ehbw_24

Challenge. Find the largest left-truncatable prime which does not have 1 as a digit.

Send me the prime, and an explanation how you found it, by next week for a bonus point!

Comment. You can play the same game in bases different from 10. We expect that (based on the prime number
theorem), for every base, there always are just a finite number of truncatable primes (an extra bonus if you
can point me to a proof of that claim!), though the number tends to increase with larger bases. The largest
truncatable prime for base 30, for instance, is not known (it is estimated to have about 82 digits in base 30).
https://oeis.org/A103463

Armin Straub
straub@southalabama.edu

54

https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://www.youtube.com/watch?v=azL5ehbw_24
https://oeis.org/A103463
https://oeis.org/A103463
https://oeis.org/A103463
https://oeis.org/A103463
https://oeis.org/A103463
https://oeis.org/A103463

Sketch of Lecture 23 Wed, 3/13/2024

� Recall that, in contrast to DES, the operations of AES have very simple (though somewhat
advanced) mathematical descriptions.

No mysteriously constructed S-boxes and P-boxes as in DES.

ByteSub (continued)

Each of the 16 bytes gets substituted as follows.

Note. The mathematical description below can be implemented in a lookup table: you can find this table in
Table 5.1 of our book or, for instance, on wikipedia: https://en.wikipedia.org/wiki/Rijndael_S-box

� Interpret the input byte (b7b6:::b0)2 as the element b7x7+ :::+ b1x+ b0 of GF(28).

� Compute s¡1= c0+ c1x+ :::+ c7x
7 (with 0¡1 interpreted as 0).

Important comment. This inversion is what makes AES highly nonlinear.
If the ByteSub substitution was linear, then all of AES would be linear (because all other layers are
linear; assuming we adjust the key schedule accordingly).

� Then the output bits (d7d6:::d1d0)2 are

266664
d0
d1
���
d7

377775=

2666666666666666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3777777777777777777775

266664
c0
c1
���
c7

377775+

2666666666666666666664

1
1
0
0
0
1
1
0

3777777777777777777775
:

Comment. The particular choice of matrix and vector has the effect that no ByteSub output equals
the ByteSub input (or its complement).

Example 144. Invert x3+1 in GF(28), constructed as in AES. [Example 140, again]

Solution. We use the extended Euclidean algorithm, and always reduce modulo 2:

x8+x4+x3+x+1 � (x5+x2+ x+1) � x3+1 + x2

x3+1 � x � x2 +1

Backtracking through this, we find that Bézout's identity takes the form

1 � 1 � x3+1 ¡x � x2 � 1 � x3+1 ¡x �
¡
x8+x4+x3+x+1 ¡ (x5+x2+x+1) � x3+1

�
� (x6+x3+x2+ x+1) � x3+1 + x � x8+ x4+ x3+ x+1 :

Hence, (x3+1)¡1= x6+ x3+ x2+ x+1 in GF(28).

Example 145. (homework)

(a) What happens to the byte (0000 0101)2 during ByteSub?

(b) What happens to the byte (0000 1001)2 during ByteSub?

Armin Straub
straub@southalabama.edu

55

https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box

Solution.

(a) (0000 0101)2 represents the polynomial x2+1.
By Example 140, its inverse is (x2+1)¡1=x6+ x4+ x in GF(28), which is c=(0101 0010)2.2666666666666666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3777777777777777777775

2666666666666666666664

0
1
0
0
1
0
1
0

3777777777777777777775
c

+

2666666666666666666664

1
1
0
0
0
1
1
0

3777777777777777777775
=

2666666666666666666664

0
1
1
1
1
1
0
0

3777777777777777777775
+

2666666666666666666664

1
0
0
0
1
1
1
1

3777777777777777777775
+

2666666666666666666664

1
1
1
0
0
0
1
1

3777777777777777777775
+

2666666666666666666664

1
1
0
0
0
1
1
0

3777777777777777777775
=

2666666666666666666664

1
1
0
1
0
1
1
0

3777777777777777777775

[This is just the usual matrix-vector product modulo 2. The highlighted columns are the ones which get
added up during this matrix-vector product.]
Hence, the output of ByteSub is the byte (0110 1011)2.
Check with lookup tables. Indeed, our computation matches 107= (0110 1011)2 in the lookup table
in our book (row 0, column (0101)2=5) or (6B)16=(0110 1011)2 on wikipedia (row (0000)2=(0)16,
column (0101)2=(5)16).

(b) (0000 1001)2 represents the polynomial x3+1.
By Example 140 or 144, (x3+1)¡1=x6+ x3+ x2+ x+1 in GF(28), which is c=(0100 1111)2.2666666666666666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3777777777777777777775

2666666666666666666664

1
1
1
1
0
0
1
0

3777777777777777777775
c

+

2666666666666666666664

1
1
0
0
0
1
1
0

3777777777777777777775
=

2666666666666666666664

1
1
1
1
1
0
0
0

3777777777777777777775
+

2666666666666666666664

0
1
1
1
1
1
0
0

3777777777777777777775
+

2666666666666666666664

0
0
1
1
1
1
1
0

3777777777777777777775
+

2666666666666666666664

0
0
0
1
1
1
1
1

3777777777777777777775
+

2666666666666666666664

1
1
1
0
0
0
1
1

3777777777777777777775
+

2666666666666666666664

1
1
0
0
0
1
1
0

3777777777777777777775
=

2666666666666666666664

1
0
0
0
0
0
0
0

3777777777777777777775

Hence, the output of ByteSub is the byte (0000 0001)2.
Check with lookup tables. Indeed, our computation matches the value 1 in the lookup table in our book
(row 0, column (1001)2=9) or (01)16 on wikipedia (row (0000)2=(0)16, column (1001)2=(9)16).

Review: multiplicative order and primitive roots

Definition 146. The multiplicative order of an invertible residue a modulo n is the smallest
positive integer k such that ak� 1 (modn).
Important note. By Euler's theorem, the multiplicative order can be at most �(n).

Example 147. What is the multiplicative order of 2 (mod 7)?
Solution. 21=2, 22=4, 23� 1 (mod7). Hence, the multiplicative order of 2 (mod7) is 3.

Definition 148. If the multiplicative order of an residue a modulo n equals �(n) [in other words,
the order is as large as possible], then a is said to be primitive root modulo n.
A primitive root is also referred to as a multiplicative generator (because the products of a and itself, that is,
1; a; a2; a3; :::, produce all invertible residues).

Example 149. What is the multiplicative order of 3 (mod 7)?
Solution. 31=3, 32� 2, 33� 6, 34� 4, 35� 5, 36� 1. Hence, the multiplicative order of 3 (mod7) is 6. This
means that 3 is a primitive root modulo 7. Note how every (invertible) residue shows up as a power of 3.

Armin Straub
straub@southalabama.edu

56

Sketch of Lecture 24 Fri, 3/15/2024

Review. x (modn) is a primitive root.

() The (multiplicative) order of x (modn) is �(n). (That is, the order is as large as possible.)

() x; x2; :::; x�(n) is a list of all invertible residues modulo n.

Lemma 150. If ar� 1 (modn) and as� 1 (modn), then agcd(r;s)� 1 (modn).
Proof. By Bezout's identity, there are integers x; y such that xr+ ys= gcd (r; s).

Hence, agcd(r;s)= axr+ys= axrays=(ar)x(as)y� 1 (modn). �

Corollary 151. The multiplicative order of a modulo n divides �(n).
Proof. Let k be the multiplicative order, so that ak� 1 (modn). By Euler's theorem a�(n)� 1 (modn). The
previous lemma shows that agcd(k;�(n))�1 (modn). But since the multiplicative order is the smallest exponent,
it must be the case that gcd (k; �(n))= k. Equivalently, k divides �(n). �

Comment. By the same argument, if am� 1 (modn), then the order of a (modn) divides m.

Example 152. Compute the multiplicative order of 2 modulo 7; 11; 9; 15. In each case, is 2 a
primitive root?
Solution.

� 2 (mod7): 22� 4; 23� 1. Hence, the order of 2 modulo 7 is 3.
Since the order is less than �(7)=6, 2 is not a primitive root modulo 7.

� 2 (mod 11): Since �(11) = 10, the only possible orders are 2; 5; 10. Hence, checking that 22 �/ 1 and
25�/ 1 is enough to conclude that the order must be 10.
Since the order is equal to �(11)= 10, 2 is a primitive root modulo 11.
Brute force approach (too much unnecessary work). Just for comparison, 20=1;21=2;22=4;23=8;
24� 5; 25� 2 � 5=10; 26� 2 �10� 9; 27� 2 � 9� 7; 28� 2 � 7� 3; 29� 2 � 3=6; 210� 2 � 6� 1. Thus, the
order of 2 mod 11 is 10.

� 2 (mod9): Since �(9) = 6, the only possible orders are 2; 3; 6. Hence, checking that 22�/ 1 and 23�/ 1
is enough to conclude that the order must be 6. (Indeed, 22� 4, 23� 8, 24� 7, 25� 5, 26� 1.)
Since the order is equal to �(9)= 6, 2 is a primitive root modulo 9.

� The order of 2 (mod15) is 4 (a divisor of �(15)= 8).
2 is not a primitive root modulo 15. In fact, there is no primitive root modulo 15.

Comment. It is an open conjecture to show that 2 is a primitive root modulo infinitely many primes. (This is
a special case of Artin's conjecture which predicts much more.)
Advanced comment. There exists a primitive root modulo n if and only if n is of one of 1; 2; 4; pk; 2pk for
some odd prime p.

Example 153. Show that x4� 1 (mod 15) for all invertible residues x (mod 15). In particular,
there are no primitive roots modulo 15.
Solution. By the Chinese Remainder Theorem:

x4� 1 (mod15)
() x4� 1 (mod3) and x4� 1 (mod5)

The congruences modulo 3 and 5 follow immediately from Fermat's little theorem.

Comment. The same argument shows that there are no primitive roots modulo pq, where p and q are distinct
odd primes (because each element has order dividing �(pq)/2).

Armin Straub
straub@southalabama.edu

57

Lemma 154. Suppose x (modn) has (multiplicative) order k.

(a) xa� 1 (modn) if and only if k ja.

(b) xa has order k

gcd (k; a) .

Proof.

(a) �=)�: By Lemma 150, xk�1 and xa�1 imply xgcd(k;a)�1 (modn). Since k is the smallest exponent,
we have k= gcd (k; a) or, equivalently, kja.
�(=�: Obviously, if k ja so that a= kb, then xa=(xk)b� 1 (modn).

(b) By the first part, (xa)m� 1 (modn) if and only if k jam. The smallest such m is m=
k

gcd (k; a) . �

Example 155. Determine the orders of each (invertible) residue modulo 7. In particular, determine
all primitive roots modulo 7.
Solution. First, observe that, since �(7)=6, the orders can only be 1; 2; 3; 6. Indeed:

residues 1 2 3 4 5 6
order 1 3 6 3 6 2

The primitive roots are 3 and 5.

Example 156. Redo Example 155, starting with the knowledge that 3 is a primitive root.
Solution.

residues 1 2 3 4 5 6

3a 30 32 31 34 35 33

order= 6
gcd (a; 6)

6
6

6
2

6
1

6
2

6
1

6
3

RSA and public key cryptography
� So far, our symmetric ciphers required a single private key k, a secret shared between the

communicating parties.
That leaves the difficult task of how to establish such private keys over a medium like the internet.

� In public key cryptosystems, there are two keys ke, kd, one for encryption and one for
decryption. Bob keeps kd secret (from anyone else!) and shares ke with the world. Alice
(or anyone else) can then send an encrypted message to Bob using ke. However, Bob is
the only who can decrypt it using kd.
It is crucial that the key kd cannot be (easily) constructed from ke.

RSA is one the first public key cryptosystems.
� It was described by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. (Note the initials!)

� However, a similar system had already been developed in 1973 by Clifford Cocks for the UK intelligence
agency GCHQ (classified until 1997). Even earlier, in 1970, his colleague James Ellis was likely the first
to discover public key cryptography.

Example 157. Let us emphasize that it should be surprising that something like public key
cryptography is even possible.
Imagine Alice, Bob and Eve sitting at a table. Everything that is being said is heard by all three of them. The
three have never met before and share no secrets. Should it be possible in these circumstances that Alice and
Bob can share information without Eve also learning about it?
Public key cryptography makes exactly that possible!

Armin Straub
straub@southalabama.edu

58

Sketch of Lecture 25 Mon, 3/18/2024

Comments on primitive roots

Example 158. Determine all primitive roots modulo 11.
Solution. Since �(11) = 10, the possible orders of residues modulo 11 are 1; 2; 5; 10. Residues with order 10
are primitive roots. Our strategy is to find one primitive root and to use that to compute all primitive roots.
There is no good way of finding the first primitive root. We will just try the residues 2; 3; 5; ::: (why not 4?!)
We compute the order of 2 (mod11):
Since 22=4�/ 1, 25�¡1�/ 1 (mod11), we find that 2 has order 10. Hence, 2 is a primitive root.

All other invertible residues are of the form 2x. Recall that the order of 2x (mod11) is 10
gcd (10; x)

.

Hence, 2x is a primitive root if and only if gcd (10; x)= 1, which yields x=1; 3; 7; 9.

In conclusion, the primitive roots modulo 11 are 21=2; 23=8; 27� 7; 29� 6.

Example 159. (extra) Determine all primitive roots modulo 22.
Solution. We proceed as in the previous example:

� Since �(22)= 10, the possible orders of residues modulo 22 are 1; 2; 5; 10.

� We find one primitive root by trying residues 3; 5; ::: (2 is out because it is not invertible modulo 22)
Since 35� 1 (mod22), 3 is not a primitive root modulo 22.
Since 55� 1 (mod22), 5 is not a primitive root modulo 22.
Since 72�/ 1, 75�¡1�/ 1 (mod22), 7 is a primitive root modulo 22.

� 7x (mod22) has order 10
gcd (10; x) . We have gcd (10; x)= 1 for x=1; 3; 7; 9.

� Hence, the primitive roots modulo 22 are 71=7; 73� 13; 77� 17; 79� 19.

Proceeding as in the previous example, we obtain the following result.

Theorem 160. (number of primitive roots) Suppose there is a primitive root modulo n. Then
there are �(�(n)) primitive roots modulo n.

Proof. Let x be a primitive root. It has order �(n). All other invertible residues are of the form xa.

Recall that xa has order �(n)

gcd (�(n); a)
. This is �(n) if and only if gcd (�(n); a) = 1. There are �(�(n)) values

a among 1; 2; :::; �(n), which are coprime to �(n).
In conclusion, there are �(�(n)) primitive roots modulo n. �

Comment. Recall that, for instance, there is no primitive root modulo 15. That's why we needed the assumption
that there should be a primitive root modulo n (which is the case if and only if n is of the form 1; 2; 4; pk; 2pk

for some odd prime p).

In particular, since there are always primitive roots modulo primes, we have the following important
case:

There are �(�(p))= �(p¡ 1) primitive roots modulo a prime p.

Example 161. (bonus challenge) For which prime p< 106 is the proportion of primitive roots
among invertible residues the smallest?

Send in a solution by next week for a bonus point!

Armin Straub
straub@southalabama.edu

59

Back to RSA

(RSA encryption)

� Bob chooses large random primes p; q.

� Bob chooses e, and then computes d such that de� 1 (mod (p¡ 1)(q¡ 1)).

� Bob makes N = pq and e public. His (secret) private key is d.

� Alice encrypts c=me (modN).

� Bob decrypts m= cd (modN).

Does decryption always work? What Bob computes is cd � (me)d =mde (modN). It follows from Euler's
theorem and de� 1 (mod �(N)) that mde�m (mod �(N)) for all invertible residues m. That this actually
works for all residues can be seen from the Chinese Remainder Theorem (see Theorem 162 below).
Is that really secure? Well, if implemented correctly (we will discuss potential issues), RSA has a good track
record of being secure. Next class, we will actually prove that finding the secret key d is as difficult as factoring
N (which is believed, but has not been proven, to be hard). On the other hand, it remains an important open
problem whether knowing d is actually necessary to decrypt a given message.
Comment. The (p ¡ 1)(q ¡ 1) in the generation of d can be replaced with lcm (p ¡ 1; q ¡ 1). This will be
illustrated in Example 166.

Theorem 162. Let N = pq and d; e be as in RSA. Then, for any m, m�mde (modN).
Comment. Using Euler's theorem, this follows immediately for residues m which are invertible modulo N .
However, it then becomes tricky to argue what happens if m is a multiple of p or q.

Proof. By the CRT, we have m�mde (modN) if and only if m�mde (mod p) and m�mde (mod q).
Since de � 1 (mod (p ¡ 1)(q ¡ 1)), we also have de � 1 (mod p ¡ 1). By little Fermat, it follows that
mde�m (mod p) for all m�/ 0 (mod p). On the other hand, if m� 0 (mod p), then this is obviously true.
Thus, m�mde (mod p) for all m. Likewise, modulo q. �

Example 163. Bob's public RSA key is N = 33, e=3.

(a) Encrypt the message m=4 and send it to Bob.

(b) Determine Bob's secret private key d.

(c) You intercept the message c= 31 from Alice to Bob. Decrypt it using the secret key.

Solution.

(a) The ciphertext is c=me (modN). Here, c� 43= 64� 31 (mod33). Hence, c= 31.

(b) N =3 � 11, so that �(N)= 2 � 10= 20.
To find d, we need to compute e¡1 (mod20). Since the numbers are so simple we see 3¡1�7 (mod20).
Hence, d=7.

(c) We need to compute m= cd (modN), that is, m= 317� (¡2)7� 4 (mod33).
That is, m=4 (as we already knew from the first part).

Example 164. For his public RSA key, Bob needs to select p; q and e. Which of these must be
chosen randomly?
Solution. The primes p and q must be chosen randomly. Anything that makes these primes more predictable,
makes it easier for an attacker to get her hands on them [in which case, the secret key d is trivial to compute].
On the other hand, e does not need to be chosen at random. In fact, knowing any pair e; d such that ed �
1 (mod (p¡ 1)(q¡ 1)) would allow us to factor N = pq (and thus break RSA). We'll prove that later.

Armin Straub
straub@southalabama.edu

60

Sketch of Lecture 26 Wed, 3/20/2024

Review. RSA

Example 165. If N = 77, what is the smallest (positive) choice for e?

Solution. Technically, e=1 works but then we wouldn't be encrypting at all.
Note that e must be invertible modulo �(N)= 6 � 10= 60. Hence, e=2; 3; 4; 5; 6 are not allowed.
The smallest possible choice for e therefore is e=7.

Example 166. Bob's public RSA key is N = 33, e= 13. His private key is d= 17.

(a) Explain how the decryption of, say, c= 26 can be sped up using the CRT.

(b) Encrypt the message m=4 and send it to Bob. Compare with the example from last class
where N = 33, e=3.

(c) Bob's choice of e= 13 is actually functionally equivalent to e=3 and, similarly, d can be
obtained as e¡1 (mod10), resulting in d=7. Explain and generalize these claims!

(d) An RSA user is shocked by the previous part and exclaims �RSA is only half as secure as
I thought:::!� How shocked should we be?

Solution. Note that the private key is d� 13¡1 (mod20)� 17.

(a) To decrypt, Bob needs to computem= cd (modN). Knowing that N = pq=3 �11, we instead compute
cd (mod p) and cd (mod q) [which is less work] and then use the CRT to recover m (modN).
Here, 2617� (¡1)17� 2 (mod3) and 2617� 417� 47� 4 � 42 � 44� 4 � 5 � 3� 5 (mod11).
Hence, m= 2617 (mod33)� 2 � 11 � (11)mod3

¡1 +5 � 3 � (3)mod11
¡1 � 22 � (¡1)+ 15 � 4� 5 (mod33).

Comment. Note that (11)mod3
¡1 and (3)mod11

¡1 can be precomputed and reused. In practice, using the
CRT leads to about a 4-fold speed up.

(b) The ciphertext is c=me (modN). Here, c� 413� :::� 31 (mod33).
If e=3 instead, then c� 43= 64� 31 (mod33) so that we get the same ciphertext. See next item!

(c) If you look back at our proof of Theorem 162, you'll see that (again using the CRT) we only need
de� 1 (mod (p¡ 1)) and de� 1 (mod (q¡ 1)) in order that mde�m (mod pq).
So, instead of d� e¡1 (mod (p¡ 1)(q¡ 1)), it is enough that d� e¡1 (modlcm (p¡ 1; q¡ 1)).
Here, lcm (2; 10)= 10, so that we only need d= e¡1 (mod10).

(d) It is definitely misleading that RSA is �half� as secure. It is indeed the case though that the key space for
the secret key d is only half (or even less) as big as that RSA user initially thought.
However, that means that, for instance, if N is 2048 bit, then the secret key is one bit (possibly more)
less than what the shocked RSA user expected. That hardly qualifies as �half as secure�.
Comment. However, if lcm (p ¡ 1; q ¡ 1) is �too small�, that is, gcd (p ¡ 1; q ¡ 1) is �too big� (so
that we are loosing considerably more than 1 bit for the key size), then p; q should be discarded. If
gcd (p¡ 1; q¡ 1)� 2e, then we are loosing about e bits for the key size.

Example 167. RSA is so cool! Why do we even care about, say, AES anymore?

Solution. RSA is certainly cool, but it is very slow (comparatively). As such, RSA is not practical for encrypting
larger amounts of data. RSA is, however, perfect for sharing secret keys, which can then be used for encrypting
data using, say, AES.

Armin Straub
straub@southalabama.edu

61

Example 168. Is it a problem that m=1 is always encrypted to c=1? (Likewise for m=0.)
Solution. Well, it would be a problem if we reply to questions using YES (say, 1) and NO (say, 0) and encrypt
our reply. However, this would always be a terrible idea in any deterministic public key cryptosystem (that is, a
system, in which a message gets encrypted in a single way)!
Why? That's because Eve can just encrypt both YES and NO (or any collection of expected messages) and see
which matches the ciphertext she intercepted.

Important conclusion. We must not send messages taken from a small predictable set and encrypt them using
a deterministic public key cryptosystem like RSA.

Once realized, this is easy to fix: for instance, Alice can just augment the plaintext with some random noise in
such a way that Bob can discard that noise after decryption. This is done when RSA is used in practice.

Comment. This applies to any public key cryptosystem, in which a message gets encrypted in a single way.
To avoid this issue, some randomness is typically introduced. For instance, for RSA, when used in practice, the
plaintext would be padded with random noise before encryption. On the other hand, the ElGamal encryption we
discuss next, has such randomness already built into it.
Comment. Note that this is not an issue with symmetric ciphers like DES or AES. In that case, even if the
attacker knows that the plaintext must be one of �0� or �1�, she still cannot draw any conclusions from intercepting
the ciphertext.

Example 169. (extra) Bob's public RSA key is N = 55, e=7.

(a) Encrypt the message m=8 and send it to Bob.

(b) Determine Bob's secret private key d.

(c) You intercept the message c=2 from Alice to Bob. Decrypt it using the secret key.

Solution.

(a) The ciphertext is c=me (modN). Here, c� 87 (mod55)
82� 9, 84� 92� 26. Hence, 87=84 � 82 � 8� 26 � 9 � 8� 2 (mod55). Hence, c=2.

(b) N =5 � 11, so that �(N)= 4 � 10= 40.
To find d, we compute e¡1 (mod40) using the extended Euclidean algorithm:

gcd (7; 40) 40 = 6 � 7 ¡ 2
= gcd (2; 7) 7 = 3 � 2 +1

= 1

Backtracking through this, we find that Bézout's identity takes the form

1= 7 ¡ 3 � 2 = 7 ¡ 3 �
¡
6 � 7 ¡ 40

�
=¡17 � 7 +3 � 40 :

Hence, 7¡1�¡17� 23 (mod40) and, so, d= 23.
Comment. Actually, as discussed in Example 166, �(N)= (p¡ 1)(q¡ 1)= 4 � 10 can be replaced with
lcm (p ¡ 1; q ¡ 1) = lcm (4; 10) = 20. It follows that the pair (e; d) = (7; 23) is equivalent to the pair
(e; d)= (7; 3).

(c) We need to compute m= cd (modN), that is, m=223 (mod55).
22=4, 24= 16, 28� 36�¡19, 216� 192� 31 (mod55). Hence, 223=216 � 24 � 22 � 2� 31 � 16 � 4 � 2�
8 (mod55).
That is, m=8 (as we already knew from the first part).
Comment. As noted above, d=3 is equivalent to d= 23. Indeed, m=23=8 (mod55).

Armin Straub
straub@southalabama.edu

62

Sketch of Lecture 27 Fri, 3/22/2024

The ElGamal public key cryptosystem and discrete logarithms

Whereas the security of RSA relies on the difficulty of factoring, the security of ElGamal and
Diffie�Hellman relies on the difficulty of computing discrete logarithms.

Discrete logarithms

Suppose b= ax (modN). Finding x is called the discrete logarithm problem mod N . If N is
a large prime p, then this problem is believed to be difficult.
Note. If b= ax, then x= loga(b). Here, we are doing the same thing, but modulo N . That's why the problem
is called the discrete logarithm problem.

Example 170. Find x such that 4� 3x (mod 7).
Solution. We have seen in Example 155 that 3 is a primitive root modulo 7. Hence, there must be such an x.
Going through the possibilities (32� 2, 33� 6, 34� 4), we find x=4, because 34� 4 (mod7).

Example 171. Find x such that 3� 2x (mod101).
Solution. Let us check that the solution is x = 69. Indeed, a quick binary exponentiation confirms that
269� 3 (mod101). (Do it!)
The point is that it is actually (believed to be) very difficult to compute these discrete logarithms. On the other
hand, just like with factorization, it is super easy to verify the answer if somebody tells us the answer.
Comment. We can check that 2 is a primitive root modulo 101. That is, 2 (mod101) has (multiplicative) order
100. That means every equation 2x� a (mod101), where a�/ 0, has a solution.

Diffie�Hellman key exchange

(Diffie�Hellman key exchange)

� Alice and Bob select a large prime p and a primitive root g (mod p).

� Bob randomly selects a secret integer x and reveals gx (mod p) to everyone.

Alice randomly selects a secret integer y and reveals gy (mod p) to everyone.

� Alice and Bob now share the secret gxy (mod p).
Indeed, Alice can compute gxy=(gx)y using the public gx and her secret y.
Likewise, Bob can compute gxy=(gy)x using the public gy and his secret x.

Why is this secure? We need to see why eavesdropping Eve cannot (simply) obtain the secret gxy (mod p).
She knows g; gx; gy (mod p) and needs to find gxy (mod p). This is the computational Diffie�Hellman
problem (CDH), which is believed to be hard (it would be easy if we could compute discrete logarithms).

Example 172. You are Eve. Alice and Bob select p = 53 and g = 5 for a Diffie�Hellman key
exchange. Alice sends 43 to Bob, and Bob sends 20 to Alice. What is their shared secret?
Solution. If Alice's secret is y and Bob's secret is x, then 5y� 43 and 5x� 20 (mod53).
Since we haven't learned a better method, we just compute 52; 53; ::: until we find 43 or 20:
52= 25, 53� 19, 54� 19 � 5�¡11, 55�¡11 � 5�¡2, 56�¡2 � 5�¡10� 43 (mod53).
Hence, Alice's secret is y=6. The shared secret is 206� 9 (mod53).
Note. We don't need to find Bob's secret. [It is x= 11.]

Armin Straub
straub@southalabama.edu

63

ElGamal encryption

Proposed by Taher ElGamal in 1985

The original paper is actually very readable: https://dx.doi.org/10.1109/TIT.1985.1057074

(ElGamal encryption)

� Bob chooses a prime p and a primitive root g (mod p).
Bob also randomly selects a secret integer x and computes h= gx (mod p).

� Bob makes (p; g; h) public. His (secret) private key is x.

� To encrypt, Alice first randomly selects an integer y.

Then, c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

� Bob decrypts m= c2c1
¡x (mod p).

Why does decryption work? c2c1
¡x=(hym)(gy)¡x=((gx)ym)(gy)¡x=m (mod p)

More conceptually, the key idea (featured in Diffie�Hellman) that makes ElGamal encryption work is that Alice
(her private secret is y) and Bob (his private secret is x) actually share a secret: gxy

Note that encryption is just multiplying m with the shared secret hy= gxy. Likewise, decryption is division by
the shared secret c1

x= gxy.
Comment. For ElGamal, the message space actually is f1; 2; :::; p¡ 1g. m=0 is not permitted.
That's, of course, no practical issue. For instance, we could simply identify f1;2; :::; p¡1g with f0;1; :::; p¡2g
by adding/subtracting 1.
Comment. p and g don't have to be chosen randomly. They can be reused. In fact, it is common to choose p
to be a �safe prime� (see next comment), with specific pre-selected choices listed, for instance, in RFC 3526.
Advanced comment. Note that in order to check whether g is a primitive root modulo p, we need to be able
to factor p¡1, which in general is hard (2 is an obvious factor, but other factors are typically large and, in fact,
we need them to be large in order for the discrete logarithm problem to be difficult). It is therefore common to
start with a prime n and then see if 2n+1 is prime as well, in which case we select p=2n+1. Such primes p
[primes such that (p¡ 1)/2 is prime, too] are called safe primes (more later).
On the other hand, g doesn't necessarily have to be a primitive root. However, we need the group generated by
g (the elements 1; g; g2; g3; :::) to be large. For more fancy cryptosystems, we can even replace these groups
with other groups such as those generated by elliptic curves.

Example 173. Bob chooses the prime p= 31, g= 11, and x=5. What is his public key?

Solution. Since h= gx (mod p) is h� 115� 6 (mod31), the public key is (p; g; h)= (31; 11; 6).
Comment. Bob's secret key is x=5. In principle, an attacker can compute x from 11x�6 (mod31). However,
this requires computing a discrete logarithm, which is believed to be difficult if p is large.

Example 174. Bob's public ElGamal key is (p; g; h)= (31; 11; 6).

(a) Encrypt the message m=3 (�randomly� choose y=4) and send it to Bob.

(b) Determine Bob's private key from his public key.

(c) Using Bob's private key, decrypt c=(9; 13).

Armin Straub
straub@southalabama.edu

64

https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074

Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).
Here, c1= 114� 9 (mod31) and c2=64 � 3� 13 (mod31). Hence, the ciphertext is c=(9; 13).

(b) To find Bob's secret key x, we need to solve 11x� 6 (mod31). This yields x=5.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we find the right one.)

Comment. Alternatively, after having done the first part, we know that m= c2c1
¡x (mod p) takes the

form 3= 13 � 9¡x (mod31), which is equivalent to 9x=13 � 3¡1�25 (mod31). While this also reveals
x=5, there is an issue with this approach. Can you see it?
[The issue is that 9 (which is c1 and could be anything) does not have to be a primitive root. In fact, 9 is
not a primitive root modulo 31. Accordingly, 9x� 25 (mod31) does not have a unique solution: x=20
is another one (and does not correspond to Bob's private key).]

(c) We decrypt m= c2c1
¡x (mod p).

Here, m= 13 � 9¡5� 3 (mod31).
Comment. One option is to compute 9¡1�7 (mod31), followed by 9¡5�75�5 (mod31) and, finally,
13 � 9¡5� 13 � 5� 3 (mod31). Another option is to begin with 9¡5� 925 (mod31) (by Fermat's little
theorem).

Example 175. (extra) Bob's public ElGamal key is (p; g; h)= (23; 10; 11).

(a) Encrypt the message m=5 (�randomly� choose y=2) and send it to Bob.

(b) Encrypt the message m=5 (�randomly� choose y=4) and send it to Bob.

(c) Break the cryptosystem and determine Bob's secret key.

(d) Use the secret key to decrypt c=(8; 7).

(e) Likewise, decrypt c=(18; 19).

Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).
Here, c1= 102� 8 (mod23) and c2= 112 � 5� 6 � 5� 7 (mod23). Hence, the ciphertext is c=(8; 7).

(b) Now, c1= 104� 18 (mod23) and c2= 114 � 5� 13 � 5� 19 (mod23) so that c=(18; 19).

(c) To find Bob's secret key x, we need to solve 10x� 11 (mod23). This yields x=3.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we find the right one.)

(d) We decrypt m= c2c1
¡x (mod p).

Here, m=7 � 8¡3� 7 � 4� 5 (mod23), as we knew from the first part.

[8¡1� 3 (mod23), so that 8¡3� 33� 4 (mod23). Or, use Fermat: 8¡3� 819� 4 (mod23).]

(e) In this case, m= 19 � 18¡3� 19 � 16� 5 (mod23), as we knew from the second part.

Example 176. If Bob selects p= 23 for ElGamal, how many possible choices does he have for
g? Which are these?
Solution. g needs to be a primitive root modulo 23. Recall that, modulo a prime p, there are �(�(p))=�(p¡1)
many primitive roots. Hence, Bob has �(p¡ 1)= �(22)= 10 choices for g.

Armin Straub
straub@southalabama.edu

65

Sketch of Lecture 28 Mon, 3/25/2024

Review. ElGamal encryption

� Like RSA, ElGamal is terribly slow compared with symmetric ciphers like AES.

Encryption under ElGamal requires two exponentiations (slower than RSA); however, these exponen-
tiations are independent of the message and can be computed ahead of time if need be (in that case,
encryption is just a multiplication, which is much faster than RSA). Decryption only requires one
exponentiation (like RSA).

� In contrast to RSA, ElGamal is randomized. That is, a single plaintextm can be encrypted
to many different ciphertexts.

A drawback is that the ciphertext is twice as large as the plaintext.
On the positive side, an attacker who might be able to guess potential plaintexts cannot (as in the case
of vanilla RSA) encrypt these herself and compare with the intercepted ciphertext.

Example 177. Does Alice have to choose a new y if she sends several messages to Bob using
ElGamal encryption?

Solution. Yes, she absolutely has to randomly choose a new y every time! Here's why:

If she was using the same y to encrypt messages m(1) and m(2), Alice would be sending the ciphertexts¡
c1
(1)
; c2
(1)�

=(gy; gxym(1)) and
¡
c1
(2)
; c2
(2)�

=(gy; gxym(2)).

That means, Eve can immediately figure out c2
(1)

/ c2
(2)

= m(1) /m(2) (the divison is a modular inverse and
everything is modulo p). That's a combination of the plaintexts, and Eve should never be able to get her hands
on such a thing.

(Note that Eve would know right away if Alice is doing the mistake of reusing y because c1
(1)

= c1
(2).)

Comment. The situation is just like for the one-time pad (in that case, reusing the key reveals m(1)�m(2)).

The computational and decisional Diffie�Hellman problem

We indicated that the security of ElGamal depends on the difficulty of computing discrete loga-
rithms. Here is a more precise statement.

Theorem 178. Obtaining m from c (without the private key) in ElGamal is exactly as difficult
as the computational Diffie�Hellman problem (CDH).

The CDH problem is the following: given g; gx; gy (mod p), find gxy (mod p). It is believed to be hard.

Proof. Recall that the public key is (p; g; h)= (p; g; gx). The ciphertext is c=(gy; hym)= (gy; gxym).
Hence, determining m is equivalent to finding gxy.
Since g; gx; gy (mod p) are known, this is precisely the CDH problem. �

Armin Straub
straub@southalabama.edu

66

Example 179. In fact, even the decisional Diffie�Hellman problem (DDH) is believed to be
difficult.
The DDH problem is the following: given g; gx; gy; r (mod p), decide whether r � gxy (mod p). Obviously,
this is simpler than the CDH problem, where gxy needs to be computed. Yet, it, too, is believed to be hard.
Comment. Well, at least it is hard (modulo p) if we always want to do better than guessing.
Here's how we can sometimes do better than guessing: if gx or gy is a quadratic residue (this is actually easy
to check modulo primes p using Euler's criterion), then gxy is a quadratic residue (why?!). Hence, if r is not a
quadratic residue, we can conclude that r�/ gxy.

More on safe primes

Recall that p is a safe prime if both p and (p ¡ 1)/2 are prime. The next example illustrates
why it is common to use safe primes for ElGamal.

In general, it is difficult to ensure that g is a primitive root, or almost a primitive root, modulo p.

Example 180. Suppose that p is a safe prime. Show that all residues g �/ 0;�1 (mod p) have
order (p¡ 1)/2 or p¡ 1.
In the latter case, g is a primitive root. In fact, if p> 5, then half of the residues g�/ 0;�1 are primitive roots.

Solution. Suppose g�/ 0;�1 (mod p). Because p is a prime and g�/ 0, g is invertible. Its multiplicative order
N divides �(p) = p ¡ 1. But the prime factorization of p ¡ 1 is 2 times (p ¡ 1)/2. Hence, the only possible
orders are 1; 2; (p¡ 1)/2 and p¡ 1. The residues �1 are the only with order 1 and 2 (why?!). Thus, g must
have order (p¡ 1)/2 or p¡ 1.
Finally, if p > 5 (with the property that (p ¡ 1) / 2 is odd), note that the number of primitive roots is
�(p¡ 1)= �(2)�((p¡ 1)/2)= (p¡ 3)/2, which is exactly half of the residues g.
Advanced comment. Actually, it is easy to distinguish between the residues that have order (p ¡ 1)/2 and
those that have order p¡ 1. Recall that, if x has order p¡1, then x2 has order p¡ 1

gcd (p¡ 1; 2) =
p¡ 1
2

. It follows

that quadratic residues have order (p ¡ 1) / 2 (provided that x �/ 0; �1). (And, using Euler's criterion, it is
computationally easy to determine whether a residue modulo p is a quadratic residue or not.)

Example 181. Is there any advantage for RSA if p is a safe prime? Potential issues?
Solution. If p is a safe prime, then gcd (p¡ 1; q¡ 1)= 2. Why?!
Hence, the key space is as large as possible.
On the other hand, we need to think about whether we are weakening the security in case we might severely
limit the number of possible p's to choose from. [The prime number theorem tells us that this is not something
we need to worry about. Can you spell out the details?]
Another issue is that generating random safe primes is considerably more work. On the other hand, Bob usually
does not generate a public key frequently, so that this might not be much of an issue.

Armin Straub
straub@southalabama.edu

67

Sketch of Lecture 29 Mon, 4/1/2024

Further comments on RSA and ElGamal

Theorem 182. Determining the secret private key d in RSA is as difficult as factoring N .

Proof. Let us show how to factor N = pq if we know e and d such that d� e¡1 (mod (p¡ 1)(q¡ 1)).

� Write ed¡ 1=2tm, where t is chosen as large as possible such that 2t divides ed¡ 1.
Since ed¡ 1� 0 (mod (p¡ 1)(q¡ 1)) and 22 divides (p¡ 1)(q¡ 1), we have t> 2.

� Pick a random invertible residue x. Observe that xed¡1� 1 (modN). In other words, (xm)2
t� 1.

Hence, the multiplicative order of xm must divide 2t.

� Suppose that xm has different order modulo p than modulo q.

Note. One can show that this works for at least half of the (invertible) residues x. As such,
if we are unlucky, we just select another x.

Since both orders must divide 2t, we may suppose xm has order 2s modulo p, and larger order modulo q.
Then, x2

sm� 1 (mod p) but x2
sm�/ 1 (mod q).

Consequently, gcd (x2
sm¡ 1; N)= p so that we have found the factor p of N .

Note. Of course, we don't know s (because we don't know p and q), but we can just go
through all s=0; 1; 2; :::; t¡ 1. One of these has to reveal the factor p. �

However. It is not known whether knowing d is actually necessary for Eve to decrypt a given ciphertext c. This
remains an important open problem.
Advanced comment. Recall that we don't necessarily need to have d� e¡1 (mod (p¡ 1)(q ¡ 1)) but that it
suffices to have the same with (p ¡ 1)(q ¡ 1) replaced by lcm (p ¡ 1; q ¡ 1). This means that, in the above
argument, we only get t> 1 but the rest of the argument still applies.

Example 183. (homework) Bob's public RSA key is N = 323, e= 101. Knowing d= 77, factor
N using the approach of the previous theorem.

Solution. Here, de¡ 1= 7776=25 � 243 so that t=5 and m= 243.

� Let's pick a=2. am=2243� 246 (mod323) must have order dividing 25.
gcd (2462¡ 1; 323)= 19 (so we don't even need to check gcd (2462

s¡ 1; 323) for s=2; 3; 4)
Hence, we have factored N = 17 � 19.

Comment. Among the �(323) = 16 � 18= 288 invertible residues a, only 36 would not lead to a factorization.
The remaining 252 residues all reveal the factor 19.
Another project idea. Run some numerical experiments to get a feeling for the number of residues that result
in a factorization.

Armin Straub
straub@southalabama.edu

68

Semantic security

Definition 184. Bob's public key cryptosystem is semantically secure if Eve cannot do better
than guessing in the following challenge:

� Bob determines a random public and private key. The public key is given to Eve.

� Eve selects two plaintexts m1 and m2.

� Alice flips a fair coin and, accordingly, using the public key encrypts m1 or m2 as c.

� Eve now needs to decide whether c is the encryption of m1 or m2.

For this definition to make precise mathematical sense, we need to assume that Eve's computing power is
somehow limited (typically, she is limited to polynomial-time algorithms).
Comment. Also, many variations exist of what semantic security exactly is. All of these try to capture the idea
that an attacker does not learn anything about m from knowing c. The one above is often referred to as IND-
CPA (Indistinguishability under Chosen Plaintext Attack).
Important comment. Realize that semantic security is a very strong property to ask for! In particular, this is much
stronger than what we usually think about in terms of security: you might call a cipher secure if it is �impossible�
for an attacker to get m from c. Semantic security is requiring that an attacker gets so little information from
c that she cannot even tell whether it came from (her own choices) m1 or m2.

Example 185. Is vanilla RSA semantically secure?

Solution. No. Eve can just encrypt both m1 and m2 herself, and compare with c. She then knows for sure
which of the two was encrypted.
Comment. As mentioned before, in practice, RSA is never used in its vanilla (or �textbook�) version (unless
random plaintexts are encrypted). Instead, it is randomized (like ElGamal is by design) by padding the plaintext
with random stuff.
Check out OAEP: https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
The resulting RSA-OAEP has been proven semantically secure (under the �RSA assumption� that findingm from
c is hard).

Example 186. Is ElGamal semantically secure?

Solution. Essentially, yes.
Recall that the public key is (p; g; h)= (p; g; gx).
The ciphertext is (c1; c2)= (gy; hym)= (gy; gxym). Eve needs to decide whether the m in there is m1 or m2.
Equivalently, she needs to decide whether r= c2/m1 (or r= c2/m2) equals gxy or not.
This is essentially the DDH problem.
Strictly speaking. Because of the issue with quadratic residues mentioned when we introduced the DDH
problem, ElGamal is not semantically secure in the sense we defined things. However, if we wanted (this is more
of a theoretical point), this issue could be fixed by not computing with all invertible residues modulo p, but only
with quadratic residues. We could further select p to be a safe prime, meaning that (p¡ 1)/2 is prime again,
in which case all quadratic residues (except 1) have order (p ¡ 1)/2 (so that no similar games can be played
using orders of elements).

Practical implications. Indeed, Diffie�Hellman and ElGamal in practice often use safe primes p. In that case,
as we observed in Example 180, there are no elements of small order (besides 1 and ¡1). Since generating such
primes can be a bit expensive, it is common to use preselected ones. For instance, RFC 3526 lists six such primes
(together with a generator g) with 1536; 2048; :::; 8192 bits.
https://www.ietf.org/rfc/rfc3526.txt

Important. It is perfectly fine that p and g are not random in Diffie�Hellman or ElGamal. However, it is absolutely
crucial that x (and y) are random (generated using a cryptographically secure PRG).

Armin Straub
straub@southalabama.edu

69

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc3526.txt

Certain attacks on RSA and ElGamal

Example 187. What is your feeling? Can we make RSA even more secure by allowing N to factor
into more than 2, say, 3 primes?

Solution. That doesn't seem like a good idea. Namely, observe that the security of RSA relies on adversaries
being unable to factor N . Allowing more factors of N (while keeping the size of N fixed) makes that task easier,
because more factors means that the factors are necessarily smaller.

Example 188. RSA has proven to be secure so far. However, it is easy to implement RSA in such
a way that it is insecure. One important but occasionally messed up part of RSA is that p and q
must be unpredictable, and the only way to achieve that is to choose p; q completely randomly
in some huge interval [M1;M2].

� For instance, if N = pq has m digits and we know the first (or last) m/4 digits of p, then
we can efficiently factor N .

An adversary might know many digits of p if, for instance, we make the mistake of generating the
random prime p by considering candidates of the form 21023+k for small (random) values of k (21023

was chosen so that the resulting number has 1024 bits).

� Also, we must use a cryptographically secure PRG to generate p and q.

If using a �bad� PRG or choosing seeds with too little entropy, then (especially among a large number
of public keys generated this way) it becomes likely that (different) public keys N and N 0 share a prime
factor p. In that case, everybody can determine p= gcd (N;N 0) and break both public keys.
Indeed. For instance, in a study of Lenstra et. al., millions of public keys were collected and compared.
Among the RSA moduli, about 0.2% shared a common prime factor with another one. That's terrible: if
(different) public keys N and N 0 share a prime factor p, then everybody can determine p=gcd(N;N 0)
and break both public keys.
http://eprint.iacr.org/2012/064.pdf

� In that direction, is the security of public key cryptosystems like RSA in any way compro-
mised when used by tens of millions of users?

As noted above, millions of people using �bad� PRGs for generating RSA public keys make it likely that
this weakness can be practically exploited.
Similarly, for Diffie�Hellman and ElGamal, it is common to use fixed primes p. While fine in principle,
this may be an issue if used by millions of users faced against an adversary Eve with vast resources. See,
for instance: https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/

Example 189. (side-channel attacks) For instance, by measuring the time it takes to decrypt
messages as m= cd (modN) in RSA, Eve might be able to reconstruct the secret key d.

This timing attack, first developed by Paul Kocher (1997), is particularly unsettling because it illustrates that the
security of a system can be compromised even if mathematically everything is sound. This sort of attack is called
a side-channel attack. It attacks the implementation (software and/or hardware) rather than the cryptographic
algorithm.
See Section 6.2.3 in our book for more details on how d can be obtained in this attack.
In a similar spririt, there exist power attacks (measuring power instead of time during decryption) or fault attacks
(for instance, injecting errors during computations):
https://en.wikipedia.org/wiki/Side-channel_attack

How to prevent? Implement RSA in such a way that no inferences can be drawn from the time and power
consumption.

Armin Straub
straub@southalabama.edu

70

http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack

Lesson. Do not implement crypto algorithms yourself!! Instead, use one of the well-tested open
implementations.

It's kind of sad, isn't it? Don't come up with your own ciphers. Don't implement ciphers yourself:::
But it is important to realize just how easy it is to implement these algorithms in such a way that security is
compromised (even if the idea, intentions and algorithms are all sound and secure).

After advertising open implementations, let us end this discussion with a cautionary example in
that regard.

Example 190. The following story made lots of headlines in 2016:

https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/

After a year, it was noticed that, in the open-source tool Socat (�Netcat++�), the Diffie-Hellman
key exchange was implemented using a hard-coded 1024 bit prime p (nothing wrong with that),
which wasn't prime! Explain how this could be used as a backdoor.

Solution. The security of the Diffie-Hellman key exchange relies on the difficulty of taking discrete logarithms
modulo p. If we can compute x in h= gx (mod p), then we can break the key exchange.
Now, if p= p1p2, then we can use the CRT to find x by solving the two (much easier!) discrete logarithm problems

h= gx (mod p1); h= gx (mod p2):

This is an example of a NOBUS backdoor (�nobody but us�), because the backdoor can only be used by the
person who knows the (secret) factorization of p.
Comment. In the present case, the Socat �prime� p actually has the two small factors 271 and 13597, and
p/(271 � 13597) is still not a prime (but nobody has been able to factor it). This might hint more at a foolish
accident than a malicious act.

Important follow-up question. Of course, the issue has been fixed and the composite number has been replaced
by the developers with a large prime. However, should we trust that it really is a prime?
We don't need to trust anyone because primality checking is simple! We can just run the Miller�Rabin test N
times. If the number was composite, there is only a 4¡N chance of us not detecting it. (In OpenSSL, for instance,
N=40 and the chance for an error, 2¡80, is astronomically low.) Both Fermat and Miller�Rabin instantly detect
the number here to be composite (for certain).
Comment. This illustrates both what's good and what's potentially problematic about open source projects.
The potentially problematic part for crypto is that Eve might be among the people working on the project. The
good part is that (hopefully!�) many experts are working on or looking into the code. Thus, hopefully, any
malicious acts on Eve's part should be spotted soon (in fact, with proper code review, should never make it into
any production version). Of course, this �hope� requires ongoing effort on the parts of everyone involved, and
the willingness to fund such projects.
�However, sometimes very few people are involved in a project, despite it being used by millions of users. For
instance, see: https://en.wikipedia.org/wiki/Heartbleed

Armin Straub
straub@southalabama.edu

71

https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed

Example 191. (short plaintext attack on RSA) Suppose a 56bit DES key (or any other short
plaintext) is written as a number m� 256� 1016.9 and encrypted as c=me (modN).

Eve makes two lists:

� cx¡e (modN) for x=1; 2; :::; 109

� ye (modN) for y=1; 2; :::; 109

If there is a match between the lists, that is cx¡e= ye (modN), then c=(xy)e (modN) and Eve has learned
that the plaintext is m= xy.
This attack will succeed if m is the product of two integers x, y (up to 109). This is the case for many integersm.
Another project idea. Quantify how many integers factor into two small factors.
How to prevent? To prevent this attack, the plaintext can be padded with random bits before being encrypted.
Recall that we should actually never use vanilla RSA (unless with random plaintexts) and always use a securely
padded version instead!

Example 192. For RSA, does double (or triple) encryption improve security?

(a) Say, if Bob asks people to send him messages first encrypted with a first public key (N;e1)
and then encrypted with a second public key (N; e2).

(b) Or, what if Bob asks people to send him messages first encrypted with a first public key
(N1; e1) and then encrypted with a second public key (N2; e2).

Solution.

(a) No, this does not result in any additional security.
After one encryption, c1 =me1 (modN) and the final ciphertext is c2 = c1

e2 (modN). However, note
that c2=me1e2 (modN), which is the same as encryption with the single public key (N; e1e2).

(b) This adds only a negligible bit of security and hence is a bad idea as well. The reason is that an attacker
able to determine the secret key for (N1; e1) is likely just as able to determine the secret key for (N2; e2),
meaning that the attack would only take twice as long (or two computers). That's only a tiny bit of
security gained, somewhat comparable to increasing N from 1024 to 1025 bits. If heightened security is
wanted, it is better to increase the size of N in the first place.
[Make sure you see how the situation here is different from the situation for 3DES.]

Example 193. (common modulus attack on RSA) Alice encrypts m using each of the RSA
public keys (N; e1) and (N; e2) so that the ciphertexts are c1 = me1 (mod N) and c2 =
me2 (modN). Eve might be able to figure out m from c1 and c2!! How and when?

Solution. The crucial observation is that c1
xc2
y�me1xme2y=me1x+e2y (modN). Eve can choose x and y.

She knows m if she can arrange x and y such that e1x+ e2y=1. This is possible if gcd (e1; e2)= 1, in which
case Eve would use the extended Euclidean algorithm to determine appropriate x and y.
A scenario. Bob's public RSA key is (N;e). However, when Alice requests this public key from Bob, her message
gets intercepted by Eve who instead sends (N; e2) back to Alice, where e2 differs from e in only one bit. Alice
uses (N;e2) to encrypt her message and sends c2 to Bob. Of course, Bob fails to decrypt Alice's message and so
resends his public key to Alice (this time, Eve doesn't intervene). Alice now uses (N; e) to encrypt her message
and sends c to Bob.
Since e¡ e2=�2r, we have gcd (e; e2)= 1 (why?!), so that Eve can determine m as explained above.
Comment on that scenario. From a practical point of view, we can argue that, if Eve can trick Alice into
using a modified version of Bob's public key, then she might as well give a completely new public key (that Eve
created) to Alice, in which case she can immediately decipher c2. That's certainly true. However, that way, Eve's
malicious intervention would be plainly visible as such.

Armin Straub
straub@southalabama.edu

72

Example 194. (chosen ciphertext attack on RSA) Show that RSA is not secure under a chosen
ciphertext attack.

First of all, let us recall that in a chosen ciphertext attack, Eve has some access to a decryption device. In the
present case, we mean the following: Eve is trying to determine m from c. Clearly, we cannot allow her to use
the decryption device on c (because then she has m and nothing remains to be said). However, Eve is allowed
to decrypt some other ciphertext c0 of her choosing (hence, �chosen ciphertext�).
You may rightfully say that this is a strange attacker who can decrypt messages except the one of particular
interest. This model is not meant to be realistic�instead, it is important for theoretical security considerations:
if our cryptosystem is secure against this (adaptive) version of chosen ciphertext attacks, then it is also secure
against any other reasonable chosen ciphertext attacks.

Solution. RSA is not secure under a chosen ciphertext attack:
Suppose c=me (modN) is the ciphertext for m.
Then, Eve can ask for the decryptionm0 of c 0=2ec (modN). Since c0=(2m)e (modN), Eve obtainsm0�2m,
from which she readily determines m=2¡1m0 (modN).
Comment. On the other hand, RSA-OAEP is provably secure against chosen ciphertext attacks. Recall that,
in this case, m is padded prior to encryption. As a result, 2m or, more generally am, is not going to be a valid
plaintext.

Example 195. What we just exploited is that RSA is multiplicatively homomorphic.
Multiplicatively homomorphic means the following: suppose m1 and m2 are two plaintexts with ciphertexts c1
and c2. Then, (the residue) m1m2 has ciphertext c1c2.
[That is, multiplication of plaintexts translates to multiplication of ciphertexts, and vice versa. Mathematically,
this means that the map m! c is a homomorphism (with respect to multiplication).]
Indeed, for RSA, c1=m1

e and c2=m2
e, so that c1c2=m1

em2
e=(m1m2)

e (modN) is the ciphertext for m1m2.
Why care? In our previous example, being multiplicatively homomorphic was a weakness of RSA (which is
�cured� by RSA-OAEP). However, there are situations where homomorphic ciphers are of practical interest.
With a homomorphic cipher, we can do calculations using just the ciphertexts without knowing the plaintexts
(for instance, the ciphertexts could be encrypted (secret) votes, which could be publicly posted; then anyone
could add up (in an additively homomorphic system) these votes into a ciphertext of the final vote count; the
advantage being that we don't need to trust an authority for that count). The search for a fully homomorphic
encryption scheme is a hot topic. For a nice initial read, you can find more at:
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/

Example 196. (chosen ciphertext attack on ElGamal) Show that ElGamal is not secure under
a chosen ciphertext attack.

Solution. Recall, again, that in a chosen ciphertext attack, Eve is trying to determine m from c and Eve has
access to a decryption device, which she can use, except not to the ciphertext c in question.
Suppose c=(c1; c2)=(gy; gxym) is the ciphertext for m. Then (c1;2c2)=(gy; gxy2m) is a ciphertext for 2m.
Hence, Eve can ask for the decryption of c 0= (c1; 2c2), which gives her m0= 2m, from which she determines
m=2¡1m0 (mod p).

In fact, again, the reason that ElGamal is not secure under a chosen ciphertext attack is that it
is multiplicatively homomorphic.

Example 197. Show that ElGamal is multiplicatively homomorphic.

Solution. Let (gy1; gxy1m1) be a ciphertext for m1, and (gy2; gxy2m2) a ciphertext for m2.

The product (component-wise) of the ciphertexts is (gy1+y2; gx(y1+y2)m1m2), which is a ciphertext for m1m2.
So, again, the product of ciphertexts corresponds to the product of plaintexts.

Armin Straub
straub@southalabama.edu

73

https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/

A quick summary of some aspects of RSA and ElGamal.

� As long as appropriate key sizes are used, both RSA and ElGamal appear secure.

About the same key size needed for both: at least 1024 bits. By now, better 2048 bits.

� The security of both RSA and ElGamal can be compromised by using a cryptographically
insecure PRG to generate the secret pieces p; q (for RSA) or x (for ElGamal).

� It is important to have different ciphers, especially ones that rely on the difficulty of
different mathematical problems.
Comment. Factoring N = pq and computing discrete logarithms modulo p are the two different
problems for RSA and ElGamal, respectively. It is not known whether the ability to solve one of
them would make it significantly easier to also solve the other one. However, historically, advances
in factorization methods (like the number field sieve) have subsequently lead to similar advances in
computing discrete logarithms. Both problems seem of comparable difficulty.

� Both are multiplicatively homomorphic, but RSA loses this property when padded.

Armin Straub
straub@southalabama.edu

74

Sketch of Lecture 30 Wed, 4/3/2024

Application: hash functions

A hash function H is a function, which takes an input x of arbitrary length, and produces an
output H(x) of fixed length, say, b bit.

Example 198. (error checking) When Alice sends a long message m to Bob over a potentially
noisy channel, she also sends the hash H(m). Bob, who receives m0 (which, he hopes is m) and
h, can check whether H(m0)=h.

Comment. This only protects against accidental errors in m (much like the check digits in credit card numbers
we discussed earlier). If Eve intercepts the message (m; H(m)), she can just replace it with (m0; H(m0)) so
that Bob receives the message m0.
Eve's job can be made much more difficult by sending m and H(m) via two different channels. For instance, in
software development, it is common to post hashes of files on websites (or announce them otherwise), separately
from the actual downloads. For that use case, we should use a one-way hash function (see next example).

� The hash function H(x) is called one-way if, given y, it is computationally infeasible to
compute m such that H(m)= y. [Also called preimage-resistant.]

Similarly, a hash function is called (weakly) collision-resistant if, given a message m, it is difficult to
find a second message m0 such that H(m)=H(m0). [Also called second preimage-resistant.]

� It is called (strongly) collision-resistant if it is computationally infeasible to find two
messages m1;m2 such that H(m1)=H(m2).
Comment. Every hash function must have many collisions. On the other hand, the above requirement
says that finding even one must be exceedingly difficult.

Example 199. (error checking, cont'd) Alice wants to send a message m to Bob. She wants
to make sure that nobody can tamper with the message (maliciously or otherwise). How can she
achieve that?
Solution. She can use a one-way hash function H, send m to Bob, and publish (or send via some second route)
y=H(m). Because H is one-way, Eve cannot find a value m0 such that H(m0)= y.

Some applications of hash functions include:

� error-checking: send m and H(m) instead of just m

� tamper-protection: send m and H(m) via different channels (H must be one-way!)

If H is one-way, then Eve cannot find m0 such that H(m0) = H(m), so she cannot tamper with m
without it being detected.

� password storage: discussed later (there are some tricky bits)

� digital signatures: more later

� blockchains: used, for instance, for cryptocurrencies such as Bitcoin

Armin Straub
straub@southalabama.edu

75

Some popular hash functions:

published output bits comment
CRC32 1975 32 not secure but common for checksums
MD5 1992 128 common; used to be secure (now broken)
SHA-1 1995 160 common; used to be secure (collision found in 2017)
SHA-2 2001 256/512 considered secure
SHA-3 2015 arbitrary considered secure

� CRC is short for Cyclic Redundancy Check. It was designed for protection against common transmission
errors, not as a cryptographic hash function (for instance, CRC is a linear function).

� SHA is short for Secure Hash Algorithm and (like DES and AES) is a federal standard selected by NIST.
SHA-2 is a family of 6 functions, including SHA-256 and SHA-512 as well as truncations of these.
SHA-3 is not meant to replace SHA-2 but to provide a different alternative (especially following successful
attacks on MD5, SHA-1 and other hash functions, NIST initiated an open competition for SHA-3 in 2007).
SHA-3 is based on Keccak (like AES is based on Rijndael; Joan Daemen involved in both). Although the
ouput of SHA-3 can be of arbitrary length, the number of security bits is as for SHA-2.
https://en.wikipedia.org/wiki/NIST_hash_function_competition

� MD is short for Message Digest. These hash functions are due to Ron Rivest (MIT), the �R� in RSA.
Collision attacks on MD5 can now produce collisions within seconds. For a practical exploit, see: https://
en.wikipedia.org/wiki/Flame_(malware)

MD6 was submitted as a candidate for SHA-3, but later withdrawn.

Constructions of hash functions

Recall that a hash function H is a function, which takes an input x of arbitrary length, and
produces an output H(x) of fixed length, say, b bit.

Example 200. (Merkle�Damgård construction) Similarly, a compression function H~ takes
input x of length b+ c bits, and produces output H~(x) of length b bits. From such a function,
we can easily create a hash function H. How?

Importantly, it can be proved that, if H~ is collision-resistant, then so is the hash function H.

Solution. Let x be an arbitrary input of any length. Let's write x = x1x2x3:::xn, where each xi is c bits (if
necessary, pad the last block of x so that it can be broken into c bit pieces).
Set h1=0 (or any other initial value), and define hi+1=H~(hi; xi) for i> 1. Then, H(x)=hn+1 (b bits).

[In H~(hi; xi), we mean that the b bits for hi are concatenated with the c bits for xi, for a total of b+ c bits.]
Comment. This construction is known as a Merkle�Damgård construction and is used in the design of many
hash functions, including MD5 and SHA-1/2.
Careful padding. Some care needs to be applied to the padding. Just padding with zeroes would result in easy
collisions (why?), which we would like to avoid. For more details:
https://en.wikipedia.org/wiki/Merkle�Damgård_construction

Armin Straub
straub@southalabama.edu

76

https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction

Example 201. Consider the compression function H~: f3 bitsg!f2 bitsg defined by

x 000 001 010 011 100 101 110 111
H~(x) 00 10 11 01 10 00 01 11

[This was not chosen randomly: the first output bit is the sum of the digits, and the second output bit is just
the second input bit.]

(a) Find a collision of H~ .

(b) Let H be the hash function obtained from H~ using the Merkle�Damgård construction
(using initial value h1=0). Compute H(1101).

(c) Find a collision with H(1101).

Solution.

(a) For instance, H~(001)=H~(100).

(b) Here, b=2 and c=1, so that each xi is 1 bit: x1x2x3x4= 1101.
h1= 00
h2=H~(h1; x1)=H~(001)= 10

h3=H~(h2; x2)=H~(101)= 00

h4=H~(h3; x3)=H~(000)= 00

h5=H~(h4; x4)=H~(001)= 10
Hence, H(1101)=h5= 10.

(c) Our computation above shows that, for instance, H(1)= 10=H(1101).

The construction of good hash functions is linked to the construction of good ciphers. Below, we
indicate how to use a block cipher to construct a hash function.

Why linked? The ciphertext produced by a good cipher should be indistinguishable from random bits. Similarly,
the output of a cryptographic hash function should look random, because the presence of patterns would likely
allow us to compute preimages or collisions.
However. The design goals for a hash function are somewhat different than for a cipher. It is therefore usually
advisable to not crossbreed these constructions and, instead, to use a specially designed hash function like SHA-
2 when a hash function is needed for cryptographic purposes.

First, however, a cautionary example.

Example 202. (careful!) Let Ek be encryption using a block cipher (like AES). Is the compression
function H~ defined by

H~(x; k)=Ek(x)

one-way?

Solution. No, it is not one-way.
Indeed, given y, we can produce many different (x;k) such thatH~(x;k)= y or, equivalently,Ek(x)= y. Namely,
pick any k, and then choose x=Dk(y).

Armin Straub
straub@southalabama.edu

77

Example 203. Let Ek be encryption using a block cipher (like AES). Then the compression
function H~ defined by

H~(x; k)=Ek(x)�x

is usually expected to be collision-resistant.
Let us only briefly think about whether H~ might have the weaker property of being one-way (as opposed to the
previous example). For that, given y, we try to find (x;k) such thatH~(x;k)= y or, equivalently, Ek(x)�x= y.
This seems difficult.
Just getting a feeling. We could try to find such (x;k) with x=0. In that case, we need to arrange k such that
Ek(0)= y. For a block cipher like AES, this seems difficult. In fact, we are trying a known-plaintext attack on
the cipher here: assuming thatm=0 and c= y, we are trying to determine the key k. A good cipher is designed
to resist such an attack, so that this approach is infeasible.
Comment. Combined with the Merkle�Damgård construction, you can therefore use AES to construct a hash
function with 128 bits output size. However, as indicated before, it is advisable to use a hash function designed
specifically for the purpose of hashing.
For several other (more careful) constructions of hash functions from block ciphers, you can check out Chapter 9.4.1
in the Handbook of Applied Cryptography (Menezes, van Oorschot and Vanstone, 2001), freely available at:
http://cacr.uwaterloo.ca/hac/

We have seen how hash functions can be constructed from block ciphers (though this is usually
not advisable). Similarly, hash functions can be used to build PRGs (and hence, stream ciphers).

Example 204. A hash function H(x), producing b bits of output, can be used to build a PRG
as follows. Let x0 be our b bit seed. Set xn=H(xn¡1), for n> 1, and yn=xn (mod 2). Then,
the output of the PRG are the bits y1y2y3:::
Comment. As for the B-B-S PRG, if b is large, it might be OK to extract more than one bit from each xn.
Comment. Technically speaking, we should extract a �hardcore bit� yn from xn.
Comment. It might be a little bit better to replace the simple rule xn =H(xn¡1) with xn =H(x0; xn¡1).
Otherwise, collisions would decrease the range during each iteration. However, if b is large, this should not be a
practical issue. (Also, think about how this alleviates the issue in the next example.)
Comment. Of course, one might then use this PRG as a stream cipher (though this is probably not a great
idea, since the design goals for hash functions and secure PRGs are not quite the same). Our book lists a
similar construction in Section 8.7: starting with a seed x0= k, bytes xn are created as follows x1=H(x0) and
xn= L8(H(x0; xn¡1)), where L8 extracts the leftmost 8 bits. The output of the PRG is x1x2x3::: However,
can you see the flaw in this construction? (Hint: it repeats very soon!)

Example 205. Suppose, with the same setup as in the previous example, we let our PRG output
x1x2x3:::, where each xn is b bits. What is your verdict?
Solution. This PRG is not unpredictable (at all). After b bits have been output, x1 is known and x2=H(x1)
can be predicted perfectly. Likewise, for all the following output.
Comment. While completely unacceptable for cryptographic purposes, this might be a fine PRG for other
purposes that do not need unpredictability.

Armin Straub
straub@southalabama.edu

78

http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/

Sketch of Lecture 31 Fri, 4/5/2024

Here is a compression function, which is provably strongly collision-resistant.

However, it is rather slow and so it is not practical for hashing larger data. On the other hand, its slowness could
be beneficial for applications like password hashing.

Example 206. (the discrete log hash) Let p be a large safe prime, meaning that q=(p¡1)/2
is also prime. Let g1; g2 be two primitive roots modulo p. Define the compression function H~ as:

H~: f0; 1; :::; q2¡ 1g!f1; 2; :::; p¡ 1g; H~(m1+m2q)= g1
m1g2

m2 (mod p):

[Note that, although not working with inputs and outputs of certain size in bits, this is a compression function,
because the input space is much larger than the output space.]

Show that finding a collision of H~ is as difficult as determining the discrete logarithm x in
g1
x= g2 (mod p).

Solution. Suppose we have a collision: g1
m1g2

m2� g1
m1
0
g2
m2
0
(mod p)

Hence, g1
(m1¡m1

0)+(m2¡m2
0)x�1 (modp) or, equivalently, (m1¡m1

0)+(m2¡m2
0)x�0 (modp¡1) (because

g1 is a primitive root and so has order p¡ 1).
This final congruence can now be solved for x.
More precisely, if d= gcd (m2¡m2

0 ; p¡ 1), there are actually d solutions for x. Since we chose p to be safe,
the only factors of p¡ 1 are 1; 2; (p¡ 1)/2; p¡ 1.
Since jm2¡m2

0 j< q, the only possibilities are d=1; 2 (unless m2=m2
0 ; however, this cannot be the case since

then also m1=m1
0 , so that we wouldn't have a collision in the first place).

Passwords

Let's say you design a system that users access using personal passwords. Somehow, you need to
store the password information.

� The worst thing you can do is to actually store the passwords m.

This is an absolutely atrocious choice, even if you take severe measures to protect (e.g. encrypt) the
collection of passwords.
Comment. Sadly, there are still systems out there doing that. An indication that this might* be
happening is when systems require you to update passwords and then complain that your new password
is too close to the original one. Any reasonably designed system should never learn about your actual
password in the first place!
*: On the other hand, think about how you could check for (certain kinds of) closeness of passwords
without having to store the actual password.

� Better, but still terrible, is to instead store hashes H(m) of the passwords m.

Good. An attacker getting hold of the password file, only learns about the hash of a user's password.
Assuming the hash function is one-way, it is infeasible for the attacker to determine the corresponding
password (if the password was randomly chosen!).
Still bad. However, passwords are (usually) not random. Hence, an attacker can go through a list of
common passwords (dictionary attack), compute the hashes and compare with the hashes of users
(similarly, a brute-force attack can simply go through all possible passwords).
Even worse, it is immediately obvious if two users are using the same password (or, if the same user is
using the same password for different services using the same hash function).
Comment. So, storing password hashes is not OK unless all passwords are completely random.

Armin Straub
straub@southalabama.edu

79

� Better, a random value s is generated for each user, and then s and H(m; s) are stored.
The value s is referred to as salt.
In other words, instead of storing the hash of the password m, we are storing the hash of the salted
password, as well as the salt.
Why? Two users using the same password would have different salt and hence different hashes stored.
As a consequence, an attacker can (of course) still mount a dictionary or brute-force attack but only
against a single user, not all users at once.
Comment. Note how the concept of salt is similar to a nonce.
Comment. To be future-proof, the hash+salt is often stored in a single field in a format like (hash-
algo, salt, salted hash).
Comment. There's also the concept of pepper (usually, sort of a secret salt). This provides extra
security if the pepper is stored separately. [Sometimes pepper is used as a sort of small random salt,
which is discarded; this only slows a brute-force attack down and should instead be addressed using the
item below.]
https://en.wikipedia.org/wiki/Pepper_(cryptography)

� Finally, we should not use the usual (fast!) hash functions like SHA-2.

Why? One of the things that makes SHA-2 a good hash function in practice is its speed. However,
that actually makes SHA-2 a poor choice in this context of password hashing. An attacker can compute
billions of hashes per second, which makes a dictionary or brute-force attack very efficient.
To make a dictonary or brute-force attack impractical, the hashing needs to be slowed down. See
Example 207 for some scary numbers.

Hashing functions like SHA-2 are not secure password hashing algorithms.

Instead, options that are considered secure include: PBKDF2, bcrypt, scrypt, Argon2.

Comment. For instance, WPA2 uses PBKDF2 based on SHA-1 with 4096 (fairly small!) iterations.
Comment. Only increasing the number of iterations increases computation time but not memory usage. scrypt
and Argon2 are designed to also consume an arbitrarily specified amount of memory.

For a nice discussion about password hashing:

https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords

Example 207. (the power of brute-force) In April 2024, the Bitcoin network hashrate is about
600E=6 � 1020 hashes per second. How long would it take to brute-force a (completely random!)
8 character password, using all 94 printable ASCII characters (excluding the space)?

Solution. There are 948� 6.1 � 1015 possible passwords. Hence, it would take about 0.000010 seconds!
Comment. Even using 10 random characters (almost no human password has that kind of entropy), there are
9410� 5.4 � 1019 possible passwords. It would take less than 0.090 seconds to go through all of these!
Comment. https://bitinfocharts.com/comparison/bitcoin-hashrate.html

Example 208. Your king's webserver contains the following code to check whether the king is
accessing the server. [As is far too common, his password derives from his girlfriend's name and year of birth.]

def check_is_king(password):
return password=="Ludmilla1310"

Obviously, anyone who might be able to see the code (including its binary version) learns about
your king's password. With minimal change, how can this be fixed?

Armin Straub
straub@southalabama.edu

80

https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://en.wikipedia.org/wiki/Pepper_(cryptography)
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html

Solution. The password should be hashed. For instance, in Python, using SHA-2 (why is that actually not a
good choice here?) with 256 output bits:

from hashlib import sha256
def check_is_king(password):

phash = sha256(password).hexdigest()
return phash == "9e4b4fe180e22bc6cdf01fe9711cf2558507e5c3ae1c3c1f6607a25741941c66"

Comment. 256 bits are 64 digits in hexadecimal.
Python comment. Of course, a real implementation would use digest() instead of hexdigest().
[For Python 3, if operating with strings (instead of bytes), sha256(password) needs to be replaced with
something like sha256(password.encode('utf-8')).]
Why is SHA not good here? Too fast to discourage brute-force attacks.

Example 209. Suppose you don't like the idea of creating random salt.

(a) How about using the same salt for all your users?

(b) Is it a good idea to use the username as salt?

Solution.

(a) This is a terrible idea and defeats the purpose of a salt. (For instance, again an attacker can immediately
see if users have the same password.)
Comment. Essentially, this is a form of pepper (if the value is kept secret, i.e. stored elsewhere).

(b) That is a reasonable idea. One reason against it is that, ideally, the salt should be unique (globally).
However, this could be easily achieved by using the username combined with something identifying your
service (like your hostname).
Comment. A possible practical reason against choosing the username for salt is that the username might
change.

Example 210. You need to hash (salted) passwords for storage. Unfortunately, you only have
SHA-2 available. What can you do?
Solution. Iterate many times! (In order to slow down the computation of the hash.) The naive way would be
to simply set h0=H(m) and hn+1=H(hn). Then use as hash the value hN for large N .
In current applications, it is typical to chooseN on the order of 106 or higher (depending on how long is reasonable
to have your user wait each time she logs in and needs her password hashed for verification).

Armin Straub
straub@southalabama.edu

81

Sketch of Lecture 32 Mon, 4/8/2024

Application: digital signatures

Goal: Using a private key, known only to her, Alice can attach her digital signature s to any
message m. Anyone knowing her public key can then verify that it could only have been Alice,
who signed the message.

� Consequently, in contrast to usual signatures, digital signatures must depend on the message to be signed
so that they cannot be simply reproduced by an adversary.

� This should sound a lot like public-key cryptography!

Cryptographically speaking, a digitally signed message (m; s) from Alice to Bob achieves:

� integrity: the message has not been accidentally or intentionally modified

� authenticity: Bob can be confident the message came from Alice
In fact, we gain even more: not only is Bob assured that the message is from Alice, but the evidence
can be verified by anyone. We have �proof� that Alice signed the message. This is referred to as non-
repudiation. We refer to a technical not a legal term here: if you are curious about legal aspects of
digital signatures, see, e.g.:

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108

For comparison, sending a message with its hash (m; H(m)) only achieves integrity (with protection against
intentional modification only if H(m) can be sent via a separate secure channel).

Example 211. (authentication using digital signatures) Last time, we saw that using human
generated and memorized passwords is problematic even if done �right� (Example 207). Among
other things, digital signatures provide an alternative approach to authentication.
Authentication. If Alice wants to authenticate herself with a server, the server sends her a (random) message.
Using her private key, Alice signs this message and sends it back to the server. The server then verifies her
(digital) signature using Alice's public key.
Obvious advantage. The server (like everyone else) doesn't know Alice's secret, so it cannot be stolen from the
server (of course, Alice still needs to protect her secret from it being stolen).

(RSA signatures) Let H be a collision-resistant hash function.

� Alice creates a public RSA key (N; e). Her (secret) private key is d.

� Her signature of m is s=H(m)d (modN).

� To verify the signed message (m; s), Bob checks that H(m)= se (modN).

Example 212. We use the silly hash function H(x)=x (mod 10).
Alice's public RSA key is (N; e)= (33; 3), her private key is d=7.

(a) How does Alice sign the message m= 12345?

(b) How does Bob verify her message?

(c) Was the message (m; s)= (314; 2) signed by Alice?

Armin Straub
straub@southalabama.edu

82

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108

Solution.

(a) H(m) = 5. The signature therefore is s = 57 (mod 33) (note how computing that signature requires
Alice's private key). Computing that, we find s= 14.

(b) Bob receives the signed message (m; s)= (12345; 14).
He computes H(m)=5 and then checks whether H(m)� s3 (mod33) (for which he only needs Alice's
public key). Indeed, 143� 5 (mod33), so the signature checked out.

(c) We computeH(m)=4 and then need to check whetherH(m)�s3 (mod33). Since 23�8�/ 4 (mod33),
the signature does not check out. Alice didn't sign the message.

Just to make sure. What's a collision of our hash function? Why is it totally not one-way?

Example 213. Why should Alice sign the hash H(m) and not the message m?

Solution. A practical reason is that signing H(m) is simpler/faster. The message m could be long, in which
case we would have to do something like chop it into blocks and sign each block (but then Eve could rearrange
these, so we would have to do something more clever, like for block ciphers). In any case, we shouldn't just sign
m (modN) because then Eve can just replace m with any m0 as long as m�m0 (modN).
There is another issue though. Namely, Eve can do the following no message attack: she starts with any signature
s, then computes m= se (modN). Everyone will then believe that (m; s) is a message signed by Alice. This
does not work if H is a one-way function: Eve now needs to find m such that H(m) = se (modN), but she
fails to find such m if H is one-way.

Example 214. Is it enough if the hash function for signing is one-way but not collision-resistant?
Solution. No, that is not enough. If there is a collision H(m)=H(m0), then Eve can ask Alice to signm to get
(m; s) and later replace m with m0, because (m0; s) is another valid signed message. (See also the comments
after the discussion of birthday attacks.)
Comment. This question is of considerable practical relevance, since hash functions like MD5 and SHA-1 have
been shown to not be collision-resistant (but are still considered essentially preimage-resistant, that is, one-way).
In the case of MD5, this has been exploited in practice:
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities

Example 215. Alice uses an RSA signature scheme and the (silly) hash function H(x)=x1+x2,
where x1=x¡1 (mod11) and x2=x¡1 (mod7) [with 0¡1 interpreted as 0] to produce the signed
message (100; 13). Forge a second signed message.

Solution. Since we have no other information, in order to forge a signed message, we need to find another
message with the same hash value as m= 100. From our experience with the Chinese remainder theorem, we
realize that changing x by 7 � 11 does not change H(x). Hence, a second signed message is (177; 13).
Comment. The hash H(m) for m= 100 is H(100)= (100¡1)mod11+(100¡1)mod7=1+4=5.

Similar to what we did with RSA signatures, one can use ElGamal as the basis for digital signatures.
A variation of that is the DSA (digital signature algorithm), another federal standard.

https://en.wikipedia.org/wiki/ElGamal_signature_scheme

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Not surprisingly, the hashes mandated for DSA are from the SHA family.

Armin Straub
straub@southalabama.edu

83

https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Sketch of Lecture 33 Fri, 4/12/2024

Birthday paradox and birthday attacks

Example 216. (birthday paradox) Among n=35 people (a typical class size; no leaplings), how
likely is it that two have the same birthday?
Solution.

1¡
�
1¡ 1

365

��
1¡ 2

365

��
1¡ 3

365

�
���
�
1¡ 34

365

�
� 0.814

If the formula doesn't speak to you, see Section 8.4 in our book for more details or checkout:
https://en.wikipedia.org/wiki/Birthday_problem

Comment. For n= 50, we get a 97.0% chance. For n= 70, it is 99.9%.
Comment. In reality, birthdays are not distributed quite uniformly, which further increases these probabilities.
Also note that, for simplicity, we excluded �leaplings�, people born on February 29.

How is this relevant to crypto, and hashes in particular?
Think about people as messages and birthdays as the hash of a person. The birthday paradox is saying that
�collisions� occur more frequently then one might expect.

Example 217. Suppose M is large (M = 365 in the birthday problem) compared to n. The
probability that, among n selections from M choices, there is no collision is�

1¡ 1
M

��
1¡ 2

M

�
���
�
1¡ n¡ 1

M

�
� e¡

n2

2M:

Why? For small x, we have ex� 1+ x (the tangent line of ex at x=0). Hence,
�
1¡ k

M

�
� e¡k/M and�

1¡ 1
M

��
1¡ 2

M

�
���
�
1¡ n¡ 1

M

�
� e¡1/Me¡2/M���e¡(n¡1)/M = e¡(1+2+:::+(n¡1))/M = e

¡n(n¡1)
2M

In the last step, we used that 1+2+ :::+(n¡ 1)= n(n¡ 1)
2

. Finally, e¡
n(n¡1)
2M � e¡

n2

2M.

Decent approximation? For instance, for M = 365 and n = 35, we get 0.813 for the chance of a collision
(instead of the true 0.814).

Important observation. If n� M
p

, then the probability of no collision is about e¡1/2�0.607.
In other words, a collision is quite likely!
In the context of hash functions, this means the following: if the output size is b bits, then there are M = 2b

many possible hashes. If we make a list of about M
p

=2b/2 many hashes, we are likely to observe a collision.

For collision-resistance, the output size of a hash function needs to have twice the number of
bits that would be necessary to prevent a brute-force attack.

Practical relevance. This is very important for every application of hashes which relies on collision-resistance,
such as digital signatures.
For instance, think about Eve trying to trick Alice into signing a fraudulent contract m. Instead of m, she
prepares a different contract m0 that Alice would be happy to sign. Eve now creates many slight variations of
m and m0 (for instance, by varying irrelevant things like commas or spaces) with the hope of finding m~ and m~ 0

such that H(m~)=H(m~ 0). (Why?!!)

Armin Straub
straub@southalabama.edu

84

https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem

Example 218. (chip based credit cards) Modern chip based credit cards use digital signatures
to authenticate a payment.
How? The card carries a public key, which is signed by the bank, so that a merchant can verify the public key.
The card then signs a challenge from the merchant for authentication. The private key used for that is not even
known to the bank.
Note that all of this can be done offline, without needing to contact the bank during the transaction.
https://en.wikipedia.org/wiki/EMV

There's an interesting and curious story made possible by the fact that, around 2000, banks in France used 320
bit RSA (chosen in the 80s and then not fixed despite expert advice) for signing the card's public key:
https://en.wikipedia.org/wiki/Serge_Humpich

Comment. For contrast, the magnetic stripe just contains the card information such as card number.
Comment. This also leads to interesting questions like: can we embed a private key in a chip (or code) in such
a way that an adversary, with full access to the circuit (or code), still cannot extract the key?
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography

A digital signature is like a hash, which can only be created by a single entity (using a private key)
but which can be verified by anyone (using a public key).

As one might expect, a symmetric version of this idea is also common:

Example 219. (MAC) A message authentication code, also known as a keyed hash, uses a
private key k to compute a hash for a message.
Like a hash, a MAC provides integrity. Further, like a digital signature, it provides authenticity because only
parties knowing the private key are able to compute the correct hash.
Comment. On the other hand, aMAC does not offer non-repudiation because several parties know the private key
(whether non-repudiation is desirable or undesirable depends on the application). Hence, it cannot be proven to
a third party who among those computed the MAC (and, in any case, such a discussion would make it necessary
to reveal the private key, which is usually unacceptable).
From hash to MAC. If you have a cryptographic hash function H, you can simply produce a MAC Mk(x)
(usually referred to as a HMAC) as follows:

Mk(x)=H(k; x)

This seems to work fine for instance for SHA-3. On the other hand, this does not appear quite as secure for
certain other common hash functions. Instead, it is common to useMk(x)=H(k;H(k;x)). For more details, see:
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

From ciphers to MAC. Similarly, we can also use ciphers to create a MAC. See, for instance:
https://en.wikipedia.org/wiki/CBC-MAC

Armin Straub
straub@southalabama.edu

85

https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Serge_Humpich
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC

Sketch of Lecture 34 Mon, 4/15/2024

Elliptic curve cryptography

The idea of Diffie�Hellman (used, for instance, in DH key exchange, ElGamal or DSA) can be
carried over to algebraic structures different from multiplication modulo p.

Recall that the key idea is, starting from individual secrets x; y, to share gx, gy modulo p in order to arrive at
the joint secret gxy (mod p). That's using multiplication modulo p.

One important example of other such algebraic structures, for which the analog of the discrete
logarithm problem is believed to be difficult, are elliptic curves.

https://en.wikipedia.org/wiki/Elliptic_curve_cryptography

Comment. The main reason (apart from, say, diversification) is that this leads to a significant saving in key
size and speed. Whereas, in practice, about 2048bit primes are needed for Diffie�Hellman, comparable security
using elliptic curves is believed to only require about 256bits.

For a beautiful introduction by Dan Boneh, check out the presentation:
https://www.youtube.com/watch?v=4M8_Oo7lpiA

Points on elliptic curves

An elliptic curve is a (nice) cubic curve that can (typically) be written in the form

y2=x3+ ax+ b:

A point (x; y) is on the elliptic curve if it satisfies this equation. Each elliptic curve also contains
the special point O (�the point at 1�). [O will act as the neutral element when �adding points�.]

Advanced comment. Sometimes it is useful (or necessary) to consider elliptic curves defined by more general
cubic equations such as y2+ a1xy + a3y = x3+ a2x

2+ a4x+ a6 (however, in most cases, a linear change of
variables can transform this equation into the simpler form y2= x3+ ax+ b mentioned above).

Example 220. Determine some points (x; y) on the elliptic curve E, described by

y2=x3¡x+9:

Solution. We can try some small values for x (say, x=0, x=1, x=2, :::) and see what y needs to be in order
to get a point on the elliptic curve. For instance, for x= 1, we get x3¡ x+ 9= 9 which implies that (1;�3)
are points on the elliptic curve.
Doing so, we find the integral points (0;�3); (�1;�3).
On the other hand, for x= 2, we get x3¡ x+ 9= 15 which implies that (2;� 15

p
) are points on the elliptic

curve. Depending on the application, we are often not interested in such irrational points.

Much less obvious rational points include (35; 207) or
�
1

36
;
647
216

�
(see Example 222).

Comment. In general, it is a very difficult problem to determine all rational points on an elliptic curve, and lots
of challenges remain open in that arena.

Armin Straub
straub@southalabama.edu

86

https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA
https://www.youtube.com/watch?v=4M8_Oo7lpiA

Example 221. Plot the elliptic curve E, described by y2=x3¡x+9 and mark the point (1; 3).
Solution. We let Sage do the work for us:

>>> E = EllipticCurve([-1,9])

>>> E.plot() + E(1,3).plot(pointsize=50, rgbcolor=(1,0,0))

−2 −1 1 2 3 4

−10

−5

5

10

Adding points on elliptic curves

Note. Simply adding the coordinates of two points P and Q on an elliptic curve will (almost always) not result
in a third point on the elliptic curve. However, we will define a more fancy �addition� of points, which we will
denote P �Q, such that the P �Q is on the elliptic curve as well.

Given a point P =(x; y) on E, we define ¡P =(x;¡y) which is another point on E.

Let us introduce an operation � in the following geometric fashion: given two points P ; Q, the
line through these two points intersects the curve in a third point R.

We then define P �Q=¡R.

We remark that P � (¡P) is the point O �at 1�. That's the neutral (zero) element for �.
How does one define P �P? (Tangent line!)
Comment. Are you able to explain why, if P and Q have rational coordinates, the same is true for R?

Remarkably, the �addition� P �Q is associative. (This is not obvious from the definition.)

Using �, we can construct new points: for instance, (0; 3)� (1;¡3)= (35; 207) as we will verify
in the next example using Sage.

Easier to verify (but not producing anything new) is (0; 3)� (1; 3)= (¡1;¡3).

Armin Straub
straub@southalabama.edu

87

Sketch of Lecture 35 Wed, 4/17/2024

Example 222. Consider again the elliptic curve E, described by y2=x3¡x+9.

(a) Determine (0; 3)� (1; 3).
(b) Determine (0; 3)� (1;¡3).
(c) Determine 4(0; 3), which is short for (0; 3)� (0; 3)� (0; 3)� (0; 3).

Solution. We let Sage do the work for us:

>>> E = EllipticCurve([-1,9])

>>> E(0,3) + E(1,3)

(¡1:¡3: 1)

>>> E(0,3) + E(1,-3)

(35: 207: 1)

>>> 4*E(0,3)�
¡ 1677023
60279696

:
1406201395535
468011559744

: 1

�
We conclude that (0; 3)� (1; 3) = (¡1;¡3) and (0; 3)� (1;¡3) = (35; 207) (one of the points mentioned in
Example 220), while

4(0; 3)=

�
¡ 1677023
60279696

;
1406201395535
468011559744

�
:

Comment. Note how Sage represents the point (x; y) as (x: y: 1). These are projective coordinates which
make it easier to incorporate the special point O which is represented by (0: 1: 0).
https://en.wikipedia.org/wiki/Projective_coordinates

The following computation demonstrates that adding O doesn't do anything:

>>> E(0)

(0: 1: 0)

>>> E(0,3) + E(0)

(0: 3: 1)

Comment. Note that, starting with a single point such as (0; ¡3), we can generate other points such as
2(0;¡3)=

�
1

36 ;
647
216

�
(one of the points mentioned in Example 220). If the initial point is rational then so are

the points generated from it.
Advanced comment. If you want to dig deeper, you can try to translate the geometric description of the addition
P � Q into algebra by deriving equations for the coordinates of P � Q= (xr; yr) in terms of the coordinates
of P =(xp; yp) and Q=(xq; yq). For instance, for the elliptic curve y2= x3+ ax+ b, one finds that

xr = �2¡ xp¡xq;
yr = �(xp¡ xr)¡ yp;

where �= (yq ¡ yp)/(xq ¡ xp) is the slope of the line connecting P and Q. If P and Q are the same point,
then this line becomes the tangent line and the slope becomes �=(3xp

2+ a)/(2yp) instead. For more details:
https://en.wikipedia.org/wiki/Elliptic_curve

From these formulas, can you reproduce the computations we did in Sage?

Armin Straub
straub@southalabama.edu

88

https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Projective_coordinates
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve

Elliptic curves modulo primes

For cryptographic purposes, elliptic curves are usually considered modulo a (large) prime p.

Example 223. Let us consider y2= x3¡ x+ 9 (the elliptic curve from the previous examples)
modulo 7. List all points on that curve.
Solution. Note that, because we are working modulo 7, there are only 7 possible values for each of x and y.
Hence, we can just go through all 72= 49 possible points (x; y) to find all points on the curve.
Or, better, we go through all possibilities for x (such as x=2) and determine the corresponding possible values
for y (if x=2, then y2=23¡ 2+9= 15� 1 (mod7) which has solutions y��1 (mod7)).
Doing so, we find 9 points: O; (0;�3); (�1;�3); (2;�1).
[Recall that O is the special point �at 1� which serves as the neutral element with respect to �.]
Comment. A theorem of Hasse�Weil says that the number of points on an elliptic curve modulo p is always
close to p (this is indeed what we expect because, for each of the p choices for x, we get an equation of the
form y2�a (mod p) which has 2 solutions if a is a nonzero quadratic residue [and for a random a the odds are
about 50% that it is quadratic]). Moreover, we can compute the exact number of points very efficiently.

By taking everything modulo 7, we still have the previously introduced addition rule �.
For instance. (0; 3)� (1;¡3)= (35; 207)� (0;¡3) (mod7)

Here is how we can use Sage to list all points, as well as add any two of them:

>>> E7 = EllipticCurve(GF(7), [-1,9])

>>> E7.points()

[(0: 1: 0); (0: 3: 1); (0: 4: 1); (1: 3: 1); (1: 4: 1); (2: 1: 1); (2: 6: 1); (6: 3: 1); (6: 4: 1)]

>>> E7(0,3) + E7(1,-3)

(0: 4: 1)

>>> E7(1,-3) + E7(0,-3)

(6: 3: 1)

Multiples of a point are simply denoted with nP . For instance, 3P =P �P �P .

We then have a version of the discrete logarithm problem for elliptic curves:

(discrete logarithm) Given P ; xP on an elliptic curve, determine x.

(computational Diffie�Hellman) Given P ; xP ; yP on an elliptic curve, determine (xy)P .

Comment. Interestingly, it appears that the computational Diffie�Hellman problem (CDH) is more difficult for
elliptic curves modulo p than for regular multiplication modulo p. Indeed, suppose that p is an n-digit prime.
Then the best known algorithms for regular CDH modulo p has runtime 2O(n3p), whereas the best algorithm for
the elliptic curve CDH modulo p has runtime p

p � 2n/2=2O(n).
As a consequence, it is believed that a smaller prime p can be used to achieve the same level of security when
using elliptic curve Diffie�Hellman (ECDH). In practice 256bit primes are used, which is believed to provide
security comparable to 2048bit (or, maybe, even 3072bit) regular Diffie�Hellman (DH); this makes ECDH about
ten times faster in practice than DH.
Comment. On the other hand, due to that reduced bit size, quantum computing attacks on elliptic curve
cryptography, if they become available, would be more feasible compared to attacks on ElGamal/RSA.

Armin Straub
straub@southalabama.edu

89

Sketch of Lecture 36 Fri, 4/19/2024

It is not an easy task to �randomly generate� cryptographically secure elliptic curves plus suitable
base point. That is a reason why pre-selected elliptic curves are of practical importance.

The following are a few examples of specific elliptic curves that are widely used in practice.

http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html

Example 224. For signing transactions, Bitcoin uses the elliptic curve

y2=x3+7 (mod p); p=2256¡ 232¡ 29¡ 28¡ 27¡ 26¡ 24¡ 1;

together with the base point P =(Px; Py) such that, in hexadecimal,

Px= 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798:

(The y-coordinate Py can be �lifted� from this; see the Sage code below.)

Where is this coming from? This is one of several vetted choices of elliptic curves compiled by the Standards
for Efficient Cryptography Group (SECG), an industry consortium, in SEC 2: http://www.secg.org/
The particular curve above is secp256k1 in that document. While the equation of the curve and the prime p
are clearly chosen to be �nice� (and so that the curve has nice properties; for instance its order is again a prime
q; consequently, all regular points have order q themselves and, thus, generate all other points), it is much more
mysterious how the point P was chosen:
https://crypto.stackexchange.com/questions/60420/

On the other hand, the choice of point is believed to not make much of a difference; in particular, it is not hard
to see that the discrete logarithm problem is equally difficulty for all points.

Here is how to compute with that elliptic curve in Sage:

>>> p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1

>>> E = EllipticCurve(GF(p), [0,7])

>>> P = E.lift_x(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)

>>> P

(55066263022277343669578718895168534326250603453777594175500187360389116729240: 3267051\
0020758816978083085130507043184471273380659243275938904335757337482424: 1)

>>> E.order()

115792089237316195423570985008687907852837564279074904382605163141518161494337

>>> is_prime(E.order())

1

>>> P.order()

115792089237316195423570985008687907852837564279074904382605163141518161494337

>>> 100*P

(107303582290733097924842193972465022053148211775194373671539518313500194639752: 103795\
966108782717446806684023742168462365449272639790795591544606836007446638: 1)

Armin Straub
straub@southalabama.edu

90

http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html
http://www.secg.org/
http://www.secg.org/
http://www.secg.org/
http://www.secg.org/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/
https://crypto.stackexchange.com/questions/60420/

Example 225. A few years ago, more than 90% of webservers used one specific, NIST specified,
elliptic curve referred to as P-256:
y2=x3¡3x+41058363725152142129326129780047268409114441015993725554835256314039467401291;

taken modulo p=2256¡ 2224+2192+296¡ 1 (the fact that p� 2256 makes the computations on the elliptic
curve much faster in practice). The initial point P =(x; y) on the curve has huge coordinates as well.
Using this single curve is sometimes considered to be problematic, especially following the concerns that the NSA
may have implemented a backdoor into Dual_EC_DRBG, which was a previous NIST standard (2006�2014).
https://en.wikipedia.org/wiki/Dual_EC_DRBG

Example 226. A popular alternative is the curve Curve25519. In addition to some desirable
theoretical advantages, its parameters are small (�nothing-up-my-sleeve numbers�) and therefore
not of similarly mysterious origin as the ones for P-256:

y2=x3+ 486662x2+x; p=2255¡ 19; x=9:

[Instead of points with (x; y) coordinates, one can actually work with just the x-coordinates for
an additional speed-up.]

https://en.wikipedia.org/wiki/Curve25519

>>> E = EllipticCurve(GF(2^255-19), [0,486662,0,1,0])

>>> E

y2=x3+ 486662x2+x

>>> E.order()

57896044618658097711785492504343953926856930875039260848015607506283634007912

>>> log(E.order(),2).n()

255.000000000000

>>> P = E.lift_x(9)

>>> P

(9: 43114425171068552920764898935933967039370386198203806730763910166200978582548: 1)

>>> 100*P

(44032819295671302737126221960004779200206561247519912509082330344845040669336: 8626006\
392447572371634278060016659575750781271666323173891504901961672743344: 1)

>>> P.order()

7237005577332262213973186563042994240857116359379907606001950938285454250989

>>> log(P.order(),2).n()

252.000000000000

>>> E.order() / P.order()

8

>>> 5*(20*P) == 20*(5*P)

1

Armin Straub
straub@southalabama.edu

91

https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve25519

