
Sketch of Lecture 30 Wed, 4/3/2024

Application: hash functions

A hash function H is a function, which takes an input x of arbitrary length, and produces an
output H(x) of fixed length, say, b bit.

Example 198. (error checking) When Alice sends a long message m to Bob over a potentially
noisy channel, she also sends the hash H(m). Bob, who receives m0 (which, he hopes is m) and
h, can check whether H(m0)=h.

Comment. This only protects against accidental errors in m (much like the check digits in credit card numbers
we discussed earlier). If Eve intercepts the message (m; H(m)), she can just replace it with (m0; H(m0)) so
that Bob receives the message m0.
Eve's job can be made much more difficult by sending m and H(m) via two different channels. For instance, in
software development, it is common to post hashes of files on websites (or announce them otherwise), separately
from the actual downloads. For that use case, we should use a one-way hash function (see next example).

� The hash function H(x) is called one-way if, given y, it is computationally infeasible to
compute m such that H(m)= y. [Also called preimage-resistant.]

Similarly, a hash function is called (weakly) collision-resistant if, given a message m, it is difficult to
find a second message m0 such that H(m)=H(m0). [Also called second preimage-resistant.]

� It is called (strongly) collision-resistant if it is computationally infeasible to find two
messages m1;m2 such that H(m1)=H(m2).
Comment. Every hash function must have many collisions. On the other hand, the above requirement
says that finding even one must be exceedingly difficult.

Example 199. (error checking, cont'd) Alice wants to send a message m to Bob. She wants
to make sure that nobody can tamper with the message (maliciously or otherwise). How can she
achieve that?
Solution. She can use a one-way hash function H, send m to Bob, and publish (or send via some second route)
y=H(m). Because H is one-way, Eve cannot find a value m0 such that H(m0)= y.

Some applications of hash functions include:

� error-checking: send m and H(m) instead of just m

� tamper-protection: send m and H(m) via different channels (H must be one-way!)

If H is one-way, then Eve cannot find m0 such that H(m0) = H(m), so she cannot tamper with m
without it being detected.

� password storage: discussed later (there are some tricky bits)

� digital signatures: more later

� blockchains: used, for instance, for cryptocurrencies such as Bitcoin

Armin Straub
straub@southalabama.edu

75



Some popular hash functions:

published output bits comment
CRC32 1975 32 not secure but common for checksums
MD5 1992 128 common; used to be secure (now broken)
SHA-1 1995 160 common; used to be secure (collision found in 2017)
SHA-2 2001 256/512 considered secure
SHA-3 2015 arbitrary considered secure

� CRC is short for Cyclic Redundancy Check. It was designed for protection against common transmission
errors, not as a cryptographic hash function (for instance, CRC is a linear function).

� SHA is short for Secure Hash Algorithm and (like DES and AES) is a federal standard selected by NIST.
SHA-2 is a family of 6 functions, including SHA-256 and SHA-512 as well as truncations of these.
SHA-3 is not meant to replace SHA-2 but to provide a different alternative (especially following successful
attacks on MD5, SHA-1 and other hash functions, NIST initiated an open competition for SHA-3 in 2007).
SHA-3 is based on Keccak (like AES is based on Rijndael; Joan Daemen involved in both). Although the
ouput of SHA-3 can be of arbitrary length, the number of security bits is as for SHA-2.
https://en.wikipedia.org/wiki/NIST_hash_function_competition

� MD is short for Message Digest. These hash functions are due to Ron Rivest (MIT), the �R� in RSA.
Collision attacks on MD5 can now produce collisions within seconds. For a practical exploit, see: https://
en.wikipedia.org/wiki/Flame_(malware)

MD6 was submitted as a candidate for SHA-3, but later withdrawn.

Constructions of hash functions

Recall that a hash function H is a function, which takes an input x of arbitrary length, and
produces an output H(x) of fixed length, say, b bit.

Example 200. (Merkle�Damgård construction) Similarly, a compression function H~ takes
input x of length b+ c bits, and produces output H~(x) of length b bits. From such a function,
we can easily create a hash function H. How?

Importantly, it can be proved that, if H~ is collision-resistant, then so is the hash function H.

Solution. Let x be an arbitrary input of any length. Let's write x = x1x2x3:::xn, where each xi is c bits (if
necessary, pad the last block of x so that it can be broken into c bit pieces).
Set h1=0 (or any other initial value), and define hi+1=H~(hi; xi) for i>1. Then, H(x)=hn+1 (b bits).

[In H~(hi; xi), we mean that the b bits for hi are concatenated with the c bits for xi, for a total of b+ c bits.]
Comment. This construction is known as a Merkle�Damgård construction and is used in the design of many
hash functions, including MD5 and SHA-1/2.
Careful padding. Some care needs to be applied to the padding. Just padding with zeroes would result in easy
collisions (why?), which we would like to avoid. For more details:
https://en.wikipedia.org/wiki/Merkle�Damgård_construction

Armin Straub
straub@southalabama.edu

76

https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction
https://en.wikipedia.org/wiki/Merkle�Damg�rd_construction


Example 201. Consider the compression function H~: f3 bitsg!f2 bitsg defined by

x 000 001 010 011 100 101 110 111
H~(x) 00 10 11 01 10 00 01 11

[This was not chosen randomly: the first output bit is the sum of the digits, and the second output bit is just
the second input bit.]

(a) Find a collision of H~ .

(b) Let H be the hash function obtained from H~ using the Merkle�Damgård construction
(using initial value h1=0). Compute H(1101).

(c) Find a collision with H(1101).

Solution.

(a) For instance, H~(001)=H~(100).

(b) Here, b=2 and c=1, so that each xi is 1 bit: x1x2x3x4= 1101.
h1= 00
h2=H~(h1; x1)=H~(001)= 10

h3=H~(h2; x2)=H~(101)= 00

h4=H~(h3; x3)=H~(000)= 00

h5=H~(h4; x4)=H~(001)= 10
Hence, H(1101)=h5= 10.

(c) Our computation above shows that, for instance, H(1)= 10=H(1101).

The construction of good hash functions is linked to the construction of good ciphers. Below, we
indicate how to use a block cipher to construct a hash function.

Why linked? The ciphertext produced by a good cipher should be indistinguishable from random bits. Similarly,
the output of a cryptographic hash function should look random, because the presence of patterns would likely
allow us to compute preimages or collisions.
However. The design goals for a hash function are somewhat different than for a cipher. It is therefore usually
advisable to not crossbreed these constructions and, instead, to use a specially designed hash function like SHA-
2 when a hash function is needed for cryptographic purposes.

First, however, a cautionary example.

Example 202. (careful!) Let Ek be encryption using a block cipher (like AES). Is the compression
function H~ defined by

H~(x; k)=Ek(x)

one-way?

Solution. No, it is not one-way.
Indeed, given y, we can produce many different (x;k) such thatH~(x;k)= y or, equivalently,Ek(x)= y. Namely,
pick any k, and then choose x=Dk(y).

Armin Straub
straub@southalabama.edu

77



Example 203. Let Ek be encryption using a block cipher (like AES). Then the compression
function H~ defined by

H~(x; k)=Ek(x)�x

is usually expected to be collision-resistant.
Let us only briefly think about whether H~ might have the weaker property of being one-way (as opposed to the
previous example). For that, given y, we try to find (x;k) such thatH~(x;k)= y or, equivalently, Ek(x)�x= y.
This seems difficult.
Just getting a feeling. We could try to find such (x;k) with x=0. In that case, we need to arrange k such that
Ek(0)= y. For a block cipher like AES, this seems difficult. In fact, we are trying a known-plaintext attack on
the cipher here: assuming thatm=0 and c= y, we are trying to determine the key k. A good cipher is designed
to resist such an attack, so that this approach is infeasible.
Comment. Combined with the Merkle�Damgård construction, you can therefore use AES to construct a hash
function with 128 bits output size. However, as indicated before, it is advisable to use a hash function designed
specifically for the purpose of hashing.
For several other (more careful) constructions of hash functions from block ciphers, you can check out Chapter 9.4.1
in the Handbook of Applied Cryptography (Menezes, van Oorschot and Vanstone, 2001), freely available at:
http://cacr.uwaterloo.ca/hac/

We have seen how hash functions can be constructed from block ciphers (though this is usually
not advisable). Similarly, hash functions can be used to build PRGs (and hence, stream ciphers).

Example 204. A hash function H(x), producing b bits of output, can be used to build a PRG
as follows. Let x0 be our b bit seed. Set xn=H(xn¡1), for n> 1, and yn=xn (mod 2). Then,
the output of the PRG are the bits y1y2y3:::
Comment. As for the B-B-S PRG, if b is large, it might be OK to extract more than one bit from each xn.
Comment. Technically speaking, we should extract a �hardcore bit� yn from xn.
Comment. It might be a little bit better to replace the simple rule xn =H(xn¡1) with xn =H(x0; xn¡1).
Otherwise, collisions would decrease the range during each iteration. However, if b is large, this should not be a
practical issue. (Also, think about how this alleviates the issue in the next example.)
Comment. Of course, one might then use this PRG as a stream cipher (though this is probably not a great
idea, since the design goals for hash functions and secure PRGs are not quite the same). Our book lists a
similar construction in Section 8.7: starting with a seed x0= k, bytes xn are created as follows x1=H(x0) and
xn= L8(H(x0; xn¡1)), where L8 extracts the leftmost 8 bits. The output of the PRG is x1x2x3::: However,
can you see the flaw in this construction? (Hint: it repeats very soon!)

Example 205. Suppose, with the same setup as in the previous example, we let our PRG output
x1x2x3:::, where each xn is b bits. What is your verdict?
Solution. This PRG is not unpredictable (at all). After b bits have been output, x1 is known and x2=H(x1)
can be predicted perfectly. Likewise, for all the following output.
Comment. While completely unacceptable for cryptographic purposes, this might be a fine PRG for other
purposes that do not need unpredictability.

Armin Straub
straub@southalabama.edu

78

http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/

