Review. $x(\bmod n)$ is a primitive root.
\Longleftrightarrow The (multiplicative) order of $x(\bmod n)$ is $\phi(n)$. (That is, the order is as large as possible.) $\Longleftrightarrow x, x^{2}, \ldots, x^{\phi(n)}$ is a list of all invertible residues modulo n.

Lemma 150. If $a^{r} \equiv 1(\bmod n)$ and $a^{s} \equiv 1(\bmod n)$, then $a^{\operatorname{gcd}(r, s)} \equiv 1(\bmod n)$.
Proof. By Bezout's identity, there are integers x, y such that $x r+y s=\operatorname{gcd}(r, s)$.
Hence, $a^{\operatorname{gcd}(r, s)}=a^{x r+y s}=a^{x r} a^{y s}=\left(a^{r}\right)^{x}\left(a^{s}\right)^{y} \equiv 1(\bmod n)$.

Corollary 151. The multiplicative order of a modulo n divides $\phi(n)$.
Proof. Let k be the multiplicative order, so that $a^{k} \equiv 1(\bmod n)$. By Euler's theorem $a^{\phi(n)} \equiv 1(\bmod n)$. The previous lemma shows that $a^{\operatorname{gcd}(k, \phi(n))} \equiv 1(\bmod n)$. But since the multiplicative order is the smallest exponent, it must be the case that $\operatorname{gcd}(k, \phi(n))=k$. Equivalently, k divides $\phi(n)$.

Comment. By the same argument, if $a^{m} \equiv 1(\bmod n)$, then the order of $a(\bmod n)$ divides m.
Example 152. Compute the multiplicative order of 2 modulo $7,11,9,15$. In each case, is 2 a primitive root?

Solution.

- $\quad 2(\bmod 7): 2^{2} \equiv 4,2^{3} \equiv 1$. Hence, the order of 2 modulo 7 is 3. Since the order is less than $\phi(7)=6,2$ is not a primitive root modulo 7 .
- $2(\bmod 11)$: Since $\phi(11)=10$, the only possible orders are $2,5,10$. Hence, checking that $2^{2} \not \equiv 1$ and $2^{5} \not \equiv 1$ is enough to conclude that the order must be 10 .
Since the order is equal to $\phi(11)=10,2$ is a primitive root modulo 11 .
Brute force approach (too much unnecessary work). Just for comparison, $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8$, $2^{4} \equiv 5,2^{5} \equiv 2 \cdot 5=10,2^{6} \equiv 2 \cdot 10 \equiv 9,2^{7} \equiv 2 \cdot 9 \equiv 7,2^{8} \equiv 2 \cdot 7 \equiv 3,2^{9} \equiv 2 \cdot 3=6,2^{10} \equiv 2 \cdot 6 \equiv 1$. Thus, the order of $2 \bmod 11$ is 10 .
- $2(\bmod 9)$: Since $\phi(9)=6$, the only possible orders are $2,3,6$. Hence, checking that $2^{2} \not \equiv 1$ and $2^{3} \not \equiv 1$ is enough to conclude that the order must be 6 . (Indeed, $2^{2} \equiv 4,2^{3} \equiv 8,2^{4} \equiv 7,2^{5} \equiv 5,2^{6} \equiv 1$.)
Since the order is equal to $\phi(9)=6,2$ is a primitive root modulo 9 .
- The order of $2(\bmod 15)$ is $4($ a divisor of $\phi(15)=8)$.

2 is not a primitive root modulo 15 . In fact, there is no primitive root modulo 15 .
Comment. It is an open conjecture to show that 2 is a primitive root modulo infinitely many primes. (This is a special case of Artin's conjecture which predicts much more.)
Advanced comment. There exists a primitive root modulo n if and only if n is of one of $1,2,4, p^{k}, 2 p^{k}$ for some odd prime p.

Example 153. Show that $x^{4} \equiv 1(\bmod 15)$ for all invertible residues $x(\bmod 15)$. In particular, there are no primitive roots modulo 15 .
Solution. By the Chinese Remainder Theorem:

```
    \(x^{4} \equiv 1(\bmod 15)\)
\(\Longleftrightarrow x^{4} \equiv 1(\bmod 3)\) and \(x^{4} \equiv 1(\bmod 5)\)
```

The congruences modulo 3 and 5 follow immediately from Fermat's little theorem.
Comment. The same argument shows that there are no primitive roots modulo $p q$, where p and q are distinct odd primes (because each element has order dividing $\phi(p q) / 2$).

Lemma 154. Suppose $x(\bmod n)$ has (multiplicative) order k.
(a) $x^{a} \equiv 1(\bmod n)$ if and only if $k \mid a$.
(b) x^{a} has order $\frac{k}{\operatorname{gcd}(k, a)}$.

Proof.
(a) " \Longrightarrow ": By Lemma $150, x^{k} \equiv 1$ and $x^{a} \equiv 1$ imply $x^{\operatorname{gcd}(k, a)} \equiv 1(\bmod n)$. Since k is the smallest exponent, we have $k=\operatorname{gcd}(k, a)$ or, equivalently, $k \mid a$.
" \Longleftarrow ": Obviously, if $k \mid a$ so that $a=k b$, then $x^{a}=\left(x^{k}\right)^{b} \equiv 1(\bmod n)$.
(b) By the first part, $\left(x^{a}\right)^{m} \equiv 1(\bmod n)$ if and only if $k \mid a m$. The smallest such m is $m=\frac{k}{\operatorname{gcd}(k, a)}$.

Example 155. Determine the orders of each (invertible) residue modulo 7. In particular, determine all primitive roots modulo 7 .
Solution. First, observe that, since $\phi(7)=6$, the orders can only be $1,2,3,6$. Indeed:

$$
\begin{array}{|r|l|l|l|l|l|l|}
\hline \text { residues } & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \text { order } & 1 & 3 & 6 & 3 & 6 & 2 \\
\hline
\end{array}
$$

The primitive roots are 3 and 5 .
Example 156. Redo Example 155, starting with the knowledge that 3 is a primitive root.
Solution.

residues	1	2	3	4	5	6
3^{a}	3^{0}	3^{2}	3^{1}	3^{4}	3^{5}	3^{3}
order $=\frac{6}{\operatorname{gcd}(a, 6)}$	$\frac{6}{6}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{2}$	$\frac{6}{1}$	$\frac{6}{3}$

RSA and public key cryptography

- So far, our symmetric ciphers required a single private key k, a secret shared between the communicating parties.
That leaves the difficult task of how to establish such private keys over a medium like the internet.
- In public key cryptosystems, there are two keys k_{e}, k_{d}, one for encryption and one for decryption. Bob keeps k_{d} secret (from anyone else!) and shares k_{e} with the world. Alice (or anyone else) can then send an encrypted message to Bob using k_{e}. However, Bob is the only who can decrypt it using k_{d}.
It is crucial that the key k_{d} cannot be (easily) constructed from k_{e}.
RSA is one the first public key cryptosystems.
- It was described by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. (Note the initials!)
- However, a similar system had already been developed in 1973 by Clifford Cocks for the UK intelligence agency GCHQ (classified until 1997). Even earlier, in 1970, his colleague James Ellis was likely the first to discover public key cryptography.

Example 157. Let us emphasize that it should be surprising that something like public key cryptography is even possible.
Imagine Alice, Bob and Eve sitting at a table. Everything that is being said is heard by all three of them. The three have never met before and share no secrets. Should it be possible in these circumstances that Alice and Bob can share information without Eve also learning about it?
Public key cryptography makes exactly that possible!

