
Sketch of Lecture 20 Wed, 2/28/2024

Example 130. (bonus challenge!) Find the smallest (pseudo)prime with 100 decimal digits, all
of which are 3 or 7.
(Send me an email by next week with the prime, and how you found it, to collect a bonus point. Earn an extra
bonus point if you can find it using a single line of Sage code [artificial concatenations not allowed].)

AES

Finite fields

Example 131. We have already seen xor in several cryptosystems. Note that a single xor operation
as in the one-time pad or stream ciphers provides no diffusion.
When designing a cipher it may be nice to replace xor of N bit blocks with an operation that
does provide some diffusion.

� A tiny amount of diffusion is provided by instead using addition modulo 2N.
Due to carries, one bit flip in the input can propagate to more than one bit flipped in the output.

� More diffusion can be achieved using operations (multiplication/inversion) in finite fields like GF(2N).
[We only need to make sure in our design that we don't multiply with zero.]

A field is a set of elements which can be added/subtracted as well as multiplied/divided by
according to the usual rules.
In particular, a field always has distinguished elements 0 and 1, which are the neutral elements with respect to
addition and multiplication, respectively.

Example 132.
� The rational numbers Q, the real numbers R, and the complex numbers C all are fields, which you have

seen before. They contain infinitely many elements.

� The integers Z are not a field because, for instance, 3 is not invertible (since 1

3
is not an integer itself).

Quotients of integers (rational numbers!) are a field.
Since addition/subtraction and multiplication work as they should, Z is what is called a ring.

� Polynomials are not a field (they are a ring like Z). Quotients of polynomials (rational functions!) are a field.

Cryptographic applications require finite structures. Correspondingly, our focus will be on finite
fields, that is, fields consisting of only a finite number of elements.

Example 133. Let p be a prime. The residues modulo p form a field, often denoted as GF(p).
GF is short for Galois field, which is another word for finite field.
Note that we can divide by any element! (Except the zero residue but, of course, we can never divide by 0.)

Example 134. The residues modulo 21 (or any other composite number) are not a field.
We can add/subtract and multiply these numbers, but we cannot always divide. Specifically, we cannot divide
by elements like 3; 6; 7; ::: even though these are nonzero (we can, of course, never divide by zero).
Note. We have already seen that this seemingly slight deficiency has �terrible� consequences. For instance, the
quadratic equation x2=1 has more than the two solutions x=�1 modulo 21 (namely, �8 as well).

AES is built upon byte operations (in contrast to DES, which is built on bit operations). Each of
the 28 bytes represents one of the 28 elements of the finite field GF(28).
Note. We do not yet know what GF(28) is. It cannot be the residues modulo 28, because we just observed that
the residues modulo n are a field only if n is prime.
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To construct the finite field GF(pn) of pn elements, we can do the following:

� Fix a polynomial m(x) of degree n, which is irreducible modulo p (i.e. cannot be factored modulo p).

� The elements of GF(pn) are polynomials modulo m(x) modulo p.

We will discuss the irreducibility condition on m(x) next time. For now, see Example 137.
Comment. Actually, all finite fields can be constructed in this fashion. Moreover, choosing different m(x) to
construct GF(pn) does not really matter: the resulting fields are always isomorphic (i.e. work in the same way,
although the elements are represented differently). That justifies writing down GF(pn), since there is exactly
one such field.

Example 135. AES is based on representing bytes as elements of the field GF(28). It is con-
structed using the polynomial x8+x4+x3+x+1 (which is indeed irreducible mod 2).
From bits to polynomials. For instance, the polynomial x7+ x4+ x corresponds to the bits 10010010 while
x6+1 corresponds to 01000001.

Example 136. The polynomial x2+x+1 is irreducible modulo 2, so we can use it to construct
the finite field GF(22) with 4 elements.

(a) List all 4 elements, and make an addition table. Then realize that this is just xor.

(b) Make a multiplication table.

(c) What is the inverse of x+1?

Solution.

(a) The four elements are 0; 1; x; x+1.
For instance, (x+1)+x=2x+1=1 (inGF(22), since we are working modulo 2). The full table is below.
Each of the four elements is of the form ax + b, which can be represented using the two bits ab (for
instance, (10)2 represents x and (11)2 represents x+1).
Then, addition of elements ax+ b in GF(22) works in the same way as xoring bits ab.

(b) For instance, (x+1)2= x2+2x+1�x2+1� (x+1)+1�x.
Here, the key is to realize that reducing modulo x2 + x + 1 is the same as saying that x2 = ¡x ¡ 1,
i.e. x2 = x + 1 in GF(22). That means all polynomials of degree 2 and higher can be reduced to
polynomials of degree less than 2.

+ 0 1 x x+1
0 0 1 x x+1
1 1 0 x+1 x
x x x+1 0 1
x+1 x+1 x 1 0

� 0 1 x x+1
0 0 0 0 0
1 0 1 x x+1
x 0 x x+1 1
x+1 0 x+1 1 x

(c) We are looking for an element y such that y(x+ 1) = 1 in GF(22). Looking at the table, we see that
y= x has that property. Hence, (x+1)¡1=x in GF(22).

Example 137. What if we proceed as in the previous example but used m(x)=x2+1 instead?

Solution. The addition table would be the same. The multiplication table would be different and a crucial
difference would be that (x+1) � (x+1)=x2+2x+1�x2+1�0, which implies that x+1 cannot be invertible.
That means our construction is not a field.
Comment. Note how, here, m(x) factors modulo 2 as x2 + 1 � (x + 1)(x + 1). Hence the condition of
irreducibility in the construction of GF(pn) is violated.
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