
Sketch of Lecture 8 Fri, 1/26/2024

Review.

� A pseudorandom generator (PRG) takes a seed x0 and produces a stream PRG(x0)=
x1x2x3 ::: of numbers, which should �look like� random numbers.
For cryptographic purposes, these numbers should be indistinguishable from random numbers. Even for
somebody who knows everything about the PRG except the seed. (See Example 59.)

� Once we have a PRG, we can use it as a stream cipher: Using the key k, we encrypt
Ek(m)=m�PRG(k). [Here, the key stream PRG(k) is assumed to be in bits.]

As with the one-time pad, we must never reuse the same keystream!

� To reuse the key, we can use a nonce: Ek(m) =m�PRG((nonce; k)), where the seed
is produced by combining the nonce and k (for instance, just concatenating them).
The nonce is then passed (unencrypted) along with the message.
To never reuse the same keystream, we must never use the same nonce with the same key.

Linear feedback shift registers

Here is another basic idea to generate pseudorandom numbers:

(linear feedback shift register (LFSR) Let ` and c1; c2; :::; c` be chosen parameters.

From the seed (x1; x2; :::; x`), where each xi is one bit, we produce the sequence

xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2):

This method is particularly easy to implement in hardware (see Example 57), and hence suited for applications
that value speed over security (think, for instance, encrypted television).

Example 56. Which sequence is generated by the LFSR xn+2 � xn+1 + xn (mod 2), starting
with the seed (x1; x2)= (0; 1)?
Solution. (x1; x2; x3; :::)= (0; 1; 1; 0; 1; 1; :::) has period 3.
Note. Observe that the two previous values determine the state, so there are 22= 4 states of the LFSR. The
state (0; 0) is special (it generates the zero sequence (0; 0; 0; 0; :::)), so there are 3 other states. Hence, it is
clear that the generated sequence has to repeat after at most 3 terms.
Comment. Of course, if we don't reduce modulo 2, then the sequence xn+2 = xn+1 + xn generates the
Fibonacci numbers 0; 1; 1; 2; 3; 5; 8; 13; :::

Example 57. Which sequence is generated by the LFSR xn+3 � xn+1 + xn (mod 2), starting
with the seed (x1; x2; x3)= (0; 0; 1)? What is the period?
[Let us first note that the LFSR has 23=8 states. Since the state (0;0;0) remains zero forever, 7 states remain.
This means that the generated sequence must be periodic, with period at most 7.]

Solution. (x1; x2; x3; :::)= (0; 0; 1; 0; 1; 1; 1; 0; 0; 1; :::) has period 7.
Again, this is not surprising: 3 previous values determine the state, so there
are 23=8 states. The state (0; 0; 0) is special, so there are 7 other states.
Note that this LFSR can be implemented in hardware using three registers
(labeled xn; xn+1; xn+2 in the sketch to the right). During each cycle, the
value of xn is read off as the next value produced by the LFSR.

xn
xn+1xn+2

+

Note. In the part 0; 0; 1; 0; 1; 1; 1 that repeats, the bit 1 occurs more frequently than 0.
The reason for that is that the special state (0; 0; 0) cannot appear.
For the same reason, the bit 1 will always occur slightly more frequently than 0 in LFSRs. However, this becomes
negligible if the period is huge, like 231¡ 1 in Example 58.

Armin Straub
straub@southalabama.edu

18



Example 58. The recurrence xn+31 � xn+28 + xn (mod 2), with a nonzero seed, generates a
sequence that has period 231¡ 1.
Note that this is the maximal possible period: this LFSR has 231 states. Again, the state (0; 0; :::; 0) is special
(the entire sequence will be zero), so that there are 231 ¡ 1 other states. This means that the terms must be
periodic with period at most 231¡ 1.
Comment. glibc (the second implementation) essentially uses this LFSR.
Advanced comment. One can show that, if the characteristic polynomial f(T )=x`+c1x`¡1+c2x`¡2+ :::+c`
is irreducible modulo 2, then the period divides 2`¡ 1. Here, f(T )=T 31+T 28+1 is irreducible modulo 2, so
that the period divides 231¡ 1. However, 231¡ 1 is a prime, so that the period must be exactly 231¡ 1.

Example 59. Eve intercepts the ciphertext c=(1111 1011 0000)2 from Alice to Bob. She knows
that the plaintext begins with m= (1100 0:::)2. Eve thinks a stream cipher using a LFSR with
xn+3�xn+2+xn (mod 2) was used. If that's the case, what is the plaintext?

Solution. The initial piece of the keystream is PRG=m� c=(1100 0:::)2� (1111 1:::)2=(0011 1:::)2.
Each xn is a single bit, and we have x1 � 0, x2 � 0, x3 � 1. The given LFSR produces x4 � x3 + x1 � 1,
x5�x4+x2� 1, x6� 0, x7� 1, and so on. Continuing, we obtain PRG= x1x2:::=(0011 1010 0111)2.
Hence, the plaintext would bem= c�PRG=(1111 1011 0000)2� (0011 1010 0111)2=(1100 0001 0111)2.

A PRG is predictable if, given the stream it outputs (but not the seed), one can with some
precision predict what the next bit will be (i.e. do better than just guessing the next bit).

In other words: the bits generated by the PRG must be indistinguishable from truly random bits, even in the eyes
of someone who knows everything about the PRG except the seed.

The PRGs we discussed so far are entirely predictable because the state of the PRGs is part of
the random stream they output.
For instance, for a given LFSR, it is enough to know any ` consecutive outputs xn; xn+1; :::; xn+`¡1 in order
to predict all future output.

We have seen two simple examples of PRGs so far:

� linear congruential generators xn+1� axn+ b (modm)

� LFSRs xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2)

Of course, we could also combine LFSRs and linear congruential generators (i.e. look at recurrences
like for LFSRs but modulo any parameter m).

However, much of the appeal of an LFSR comes from its extremely simple hardware realization, as the sketch
in Example 57 indicates.

Example 60. (extra) One can also consider nonlinear recurrences (it mitigates some issues). Our
book mentions xn+3�xn+2xn+xn+1 (mod 2). Generate some numbers.

Solution. For instance, using the seed 0; 0; 1, we generate 0; 0; 1
seed

; 0; 1; 1; 1; 0; 1; ::: which now repeats (with
period 4) because the state 1; 0; 1 appeared before. Observe that the generated sequences is only what is called
eventually periodic (it is not strictly periodic because 0; 0; 1 never shows up again).

Armin Straub
straub@southalabama.edu

19


