
Sketch of Lecture 4 Wed, 1/17/2024

Historical examples of symmetric encryption

Alice wants to send a secret message to Bob.

What Alice sends will be transmitted through an unsecure medium (like the internet), meaning that others can
read it. However, it is important to Alice and Bob that no one else can understand it.

The original message is referred to as the plaintext m. What Alice actually sends is called the
ciphertext c (the encrypted message).

Symmetric encryption algorithms rely on a secret key k (from some key space) shared by Alice
and Bob (but unknown to anyone else).
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E: Encrypt
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¡!Ek(m)=c c is sent ¡!c
Bob

D: Decrypt
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Our ultimate goal will be to secure messaging against both:

� eavesdropping (goal: confidentiality)

� tampering (goal: integrity and, even stronger, authenticity)
The symmetric encryption approach, by itself, cannot fully protect against tampering. For instance, an
attacker can collect previously sent messages, resend them, or use them to replace new messages. (You
could preface each message with something like a time stamp to address these issues. But that's getting
ahead of ourselves; and there are better ways.)

Shift cipher

The alphabet for our messages will be A;B; :::; Z, which we will identify with 0; 1; :::; 25.
So, for instance, C is identified with the number 2.

Example 21. (shift cipher) A key is an integer k 2 f0; 1; :::; 25g. Encryption works character
by character using

Ek: x 7!x+ k (mod 26):

Obviously, the decryption Dk works as x 7!x¡ k (mod 26).
The key space is f0; 1; :::; 25g. It has size 26. [Well, k=0 is a terrible key. Maybe we should exclude it.]

For instance. If k=1, then the message HELLO is encrypted as IFMMP .
If k=2, then the message HELLO is encrypted as JGNNQ.

Historic comment. Caesar encrypted some private messages with a shift cipher (typically using k = 3). The
shift cipher is therefore also often called Caesar's cipher.
While completely insecure today, it was fairly secure at the time (with many of his enemies being illiterate).
Modern comment. Many message boards on the internet �encrypt� things like spoilers or solutions using a shift
cipher with k= 13. This is called ROT13. What's special about the choice k= 13?
Solution. Since ¡13� 13 (mod26), for ROT13, encryption and decryption are the same!
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Example 22. (affine cipher) A slight upgrade to the shift cipher, we encrypt each character as

E(a;b): x 7! ax+ b (mod26):

How does the decryption work? How large is the key space?

Solution. Each character x is decrypted via x 7! a¡1(x¡ b) (mod26).
The key is k= (a; b). Since a has to be invertible modulo 26, there are �(26) = �(2) � �(13) = 12 possibilities
for a. There are 26 possibilities for b. Hence, the key space has size 12 � 26= 312.

Vigenere cipher (vector shift cipher)

See Section 2.3 of our book for a full description of the Vigenere cipher.

This cipher was long believed by many (until early 20th) to be secure against ciphertext only attacks (more on
the classification of attacks shortly).

Example 23. Let us encrypt HOLIDAY using a Vigenere cipher with key BAD (i.e. 1; 0; 3).

H O L I D A Y
+ B A D B A D B
= I O O J D D Z

Hence, the ciphertext is IOOJDDZ.

An encrypted message

Example 24. (bonus challenge!) You find a post-it with the following message:

ZHOFRPH WR FUBSWR

Can you make any sense of it?

(To collect a bonus point, send me an email before next class with the plaintext and how you found it.)

Example 25. The challenge from Example 24 was encrypted using :::. The key space has size
:::, so a brute-force attack results in immediate success: we find that the plaintext is :::

This is the worst kind of vulnerability: we successfully mounted a ciphertext only attack.

That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).
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Fermat's little theorem

Example 26. (warmup) What a terrible blunder::: Explain what is wrong!

(incorrect!) 109� 32=9� 2 (mod 7)

Solution. 109= 10 � 10 � ::: � 10� 3 � 3 � ::: � 3=39. Hence, 109� 39 (mod7).
However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).
Corrected calculation. 32� 2, 34� 4, 38� 16� 2. Hence, 39=38 � 31� 2 � 3�¡1 (mod7).
By the way, this approach of computing powers via exponents that are 2; 4; 8; 16; 32; ::: is called binary
exponentiation. It is crucial for efficiently computing large powers.
Corrected calculation (using Fermat). 36 � 1 just like 30 = 1. Hence, we are allowed to reduce exponents
modulo 6. Hence, 39� 33�¡1 (mod7).

Theorem 27. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

Proof. (beautiful!) Since a is invertible modulo p, the first p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all different modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �
Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that xn+ yn=
zn has no integer solutions if n> 2 (only recently proved by Wiles).
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