Review: The calculus of congruences

Example 1. Today is Monday. What day of the week will it be a year (366 days!) from now?
Solution. Since $366 \equiv 2(\bmod 7)$, it will be Wednesday on $1 / 8 / 2025$.

$$
a \equiv b \quad(\bmod n) \quad \text { means } \quad a=b+m n \quad \text { (for some } m \in \mathbb{Z})
$$

In that case, we say that " a is congruent to b modulo n ".
In other words: $a \equiv b(\bmod n)$ if and only if $a-b$ is divisible by n.
Example 2. $17 \equiv 5(\bmod 12)$ as well as $17 \equiv 29 \equiv-7(\bmod 12)$
We say that $5,17,29,-7$ all represent the same residue modulo 12 .
There are exactly 12 different residues modulo 12 .
Example 3. Every integer x is congruent to one of $0,1,2,3,4, \ldots, 11$ modulo 12 .
We therefore say that $0,1,2,3,4, \ldots, 11$ form a complete set of residues modulo 12 .
Another natural complete set of residues modulo 12 is: $0, \pm 1, \pm 2, \ldots, \pm 5,6$
[-6 is not included because $-6 \equiv 6$ modulo 12.]
Online homework. When entering solutions modulo n for online homework, your answer needs to be from one of the two natural sets of residues above.

Example 4. Modulo 7, we have the complete sets of residues $0,1,2,3,4,5,6$ and $0, \pm 1, \pm 2, \pm 3$. A less obvious set is $0,3,3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}$.
Review. Note that $3^{6} \equiv 1(\bmod 7)$ by Fermat's little theorem. Because 6 is the smallest positive exponent such that $3^{k} \equiv 1(\bmod 7)$, we say that the multiplicative order of $3(\bmod 7)$ is 6 . This makes $3(\bmod 7)$ a primitive root.
On the other hand, the multiplicative order of $2(\bmod 7)$ is 3 . (Why?!)
Example 5. $67 \cdot 24 \equiv 4 \cdot 3 \equiv 5(\bmod 7)$
The point being that we can (and should!) reduce the factors individually first (to avoid the large number we would get when actually computing $67 \cdot 24$ first). This idea is crucial in the computations we (better, our computers) will later do for cryptography.

Example 6. (but careful!) If $a \equiv b(\bmod n)$, then $a c \equiv b c(\bmod n)$ for all integers c.
However, the converse is not true! We can have $a c \equiv b c(\bmod n)$ without $a \equiv b(\bmod n)$ (even assuming that $c \not \equiv 0$).
For instance. $2 \cdot 4 \equiv 2 \cdot 1(\bmod 6)$ but $4 \not \equiv 1(\bmod 6)$
However. $2 \cdot 4 \equiv 2 \cdot 1(\bmod 6)$ means $2 \cdot 4=2 \cdot 1+6 m$. Hence, $4=1+3 m$, or, $4 \equiv 1(\bmod 3)$.
The issue is that 2 is not invertible modulo 6 .

$$
a \text { is invertible modulo } n \Longleftrightarrow \operatorname{gcd}(a, n)=1
$$

Similarly, $a b \equiv 0(\bmod n)$ does not always imply that $a \equiv 0(\bmod n)$ or $b \equiv 0(\bmod n)$.
For instance. $4 \cdot 15 \equiv 0(\bmod 6)$ but $4 \not \equiv 0(\bmod 6)$ and $15 \not \equiv 0(\bmod 6)$

Good news. These issues do not occur when n is a prime p.

- If $a b \equiv 0(\bmod p)$, then $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.
- Suppose $c \not \equiv 0(\bmod p)$. If $a c \equiv b c(\bmod p)$, then $a \equiv b(\bmod p)$.

Example 7. Determine $4^{-1}(\bmod 13)$.
Recall. This is asking for the modular inverse of 4 modulo 13 . That is, a residue x such that $4 x \equiv 1(\bmod 13)$. Brute force solution. We can try the values $0,1,2,3, \ldots, 12$ and find that $x=10$ is the only solution modulo 13 (because $4 \cdot 10 \equiv 1(\bmod 13)$).
This approach may be fine for small examples when working by hand, but is not practical for serious congruences. On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely efficiently.
Glancing. In this special case, we can actually see the solution if we notice that $4 \cdot 3=12$, so that $4 \cdot 3 \equiv$ $-1(\bmod 13)$ and therefore $4^{-1} \equiv-3(\bmod 13)$.

Example 8. Solve $4 x \equiv 5(\bmod 13)$.
Solution. From the previous problem, we know that $4^{-1} \equiv-3(\bmod 13)$.
Hence, $x \equiv 4^{-1} \cdot 5 \equiv-3 \cdot 5=-2(\bmod 13)$.
(Bézout's identity) Let $a, b \in \mathbb{Z}$ (not both zero). There exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y
$$

The integers x, y can be found using the extended Euclidean algorithm.
In particular, if $\operatorname{gcd}(a, b)=1$, then $a^{-1} \equiv x(\bmod b)\left(\right.$ as well as $\left.b^{-1} \equiv y(\bmod a)\right)$.
Here, \mathbb{Z} denotes the set of all integers $0, \pm 1, \pm 2, \ldots$
Example 9. Find $d=\operatorname{gcd}(17,23)$ as well as integers r, s such that $d=17 r+23 s$.
Solution. We apply the extended Euclidean algorithm:

$$
\begin{array}{llrl}
\operatorname{gcd}(17,23) & \boxed{23}=1 \cdot \boxed{17}+6 & \text { or: } \\
=\operatorname{gcd}(6,17) & \boxed{A}=3 \cdot \boxed{6}-1 & \boxed{B} & 1=1 \cdot \boxed{23}-1 \cdot \boxed{17} \\
=1 & & &
\end{array}
$$

Backtracking through this, we find that:

That is, Bézout's identity takes the form $1=-4 \cdot 17+3 \cdot 23$.
Comment. Note how our second step was $17=3 \cdot 6-1$ rather than $17=2 \cdot 6+5$. The latter works as well but requires a third step (do it!). In general, we save time by allowing negative remainders if they are smaller in absolute value.

Example 10. Determine $17^{-1}(\bmod 23)$.
Solution. By the previous example, $1=-4 \cdot 17+3 \cdot 23$. Reducing modulo 23 , we get $-4 \cdot 17 \equiv 1(\bmod 23)$. Hence, $17^{-1} \equiv-4(\bmod 23)$. [Or, if preferred, $17^{-1} \equiv 19(\bmod 23)$.]

