Homework Set 11

Problem 1

Example 28. Among 20 people (no leaplings), what is the probability that two have the same birthday?

Solution. The probability is

$$
1-\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right)\left(1-\frac{3}{365}\right) \cdots\left(1-\frac{19}{365}\right) \approx 0.411438
$$

[Or, equivalently, about 41.14\%.]

Problem 2

Example 29. Consider the elliptic curve $y^{2}=x^{3}+3 x+5$ as well as the points $P=(4,9)$ and $Q=(1,3)$ on that curve. Determine $P \boxplus Q$.

Solution. We let Sage do the work for us:

```
>>> E = EllipticCurve([3,5])
>>> E(4,9) + E(1,3)
    (-1:1:1)
```

We conclude that $P \boxplus Q=(-1,1)$.

Problem 3

Example 30. Consider the elliptic curve $y^{2}=x^{3}+7 x+4$ as well as the point $P=(0,2)$ on that curve.
(a) Determine $2 P$.
(b) Determine $3 P$.

Solution. We let Sage do the work for us:

```
>>> E = EllipticCurve([7,4])
```

>>> $2 * E(0,2)$

$$
\left(\frac{49}{16}:-\frac{471}{64}: 1\right)
$$

>>> $3 * E(0,2)$

$$
\left(\frac{15072}{2401}: \frac{2021734}{117649}: 1\right)
$$

We conclude that $2 P=\left(\frac{49}{16},-\frac{471}{64}\right)$ and $3 P=\left(\frac{15072}{2401}, \frac{2021734}{117649}\right)$.

Problem 4

Example 31. Consider the elliptic curve $y^{2}=x^{3}+3 x+2$ modulo 5 . List all points (x, y).
Solution. Note that, because we are working modulo 5 , there are only 5 possible values for x. Hence, we can go through all possibilities for x and determine the corresponding possible values for y :

- $\quad x=0: y^{2}=0^{3}+3 \cdot 0+2=2$ has no solutions.
- $\quad x=1: y^{2}=1^{3}+3 \cdot 1+2 \equiv 1$ has solutions $y \equiv \pm 1$, resulting in the points $(1, \pm 1)$.
- $\quad x=2: y^{2}=2^{3}+3 \cdot 2+2 \equiv 1$ has solutions $y \equiv \pm 1$, resulting in the points $(2, \pm 1)$.
- $x=-2: y^{2}=(-2)^{3}+3 \cdot(-2)+2 \equiv-2$ has no solutions.
- $\quad x=-1: y^{2}=(-1)^{3}+3 \cdot(-1)+2 \equiv-2$ has no solutions.

Overall, we have found the points $(1, \pm 1),(2, \pm 1)$, for a total of 5 points if we include the special point O.

Sage. Alternatively, we can let Sage do this work for us:

```
>>> E = EllipticCurve(GF(5), [3,2])
>>> E.points()
    [(0:1:0),(1:1:1), (1:4:1),(2:1:1),(2:4:1)]
```


Problem 5

Example 32. Consider the elliptic curve $y^{2}=x^{3}+9 x+5$ modulo 43 as well as the point $P=(3,4)$ on that curve.
(a) Determine $2 P$.
(b) Determine $3 P$.

Solution. We let Sage do the work for us:
>>> E = EllipticCurve (GF(43), [9,5])
>>> $2 * \mathrm{E}(3,4)$
(25: 26: 1)
>>> $3 * E(3,4)$
(16: 26: 1)
We conclude that $2 P=(25,26)$ and $3 P=(16,26)$.

