Homework Set 10

Problem 1

Example 25. Consider the following compression function $C(x)$ which takes three bits input and outputs two bits:

x	000	001	010	011	100	101	110	111
$C(x)$	10	00	11	01	01	10	00	11

Let $H(x)$ be the hash function obtained from $C(x)$ using the Merkle-Damgård construction (using initial value $\left.h_{1}=0\right)$. Compute $H(11000)$.

Solution. Here, $b=2$ and $c=1$, so that each x_{i} is 1 bit: $x_{1} x_{2} x_{3} x_{4} x_{5}=11000$.
$h_{1}=00$
$h_{2}=C\left(h_{1}, x_{1}\right)=C(001)=00$
$h_{3}=C\left(h_{2}, x_{2}\right)=C(001)=00$
$h_{4}=C\left(h_{3}, x_{3}\right)=C(000)=10$
$h_{5}=C\left(h_{4}, x_{4}\right)=C(100)=01$
$h_{6}=C\left(h_{5}, x_{5}\right)=C(010)=11$
Hence, $H(11000)=h_{6}=11$.

Problem 2

Example 26. Bob's public RSA key is $(N, e)=(35,19)$. His private key is $d=19$. For signing, Bob uses the (silly) hash function $H(x)=x(\bmod 22)$. Determine Bob's signature s of the message $m=361$.

Solution. $H(m)=361(\bmod 22)=9$. The signature therefore is $s=H(m)^{d}(\bmod N)=9^{19} \equiv 9(\bmod 35)$.

Problem 3

Example 27. Alice uses an RSA signature scheme and the (silly) hash function $H(x)=x_{1}+x_{2}$, where $x_{1}=3 x(\bmod 11)$ and $x_{2}=2 x(\bmod 29)$, to sign the message $m=1299$ with the signature $s=121$. Forge a second signed message.
Solution. Since we have no other information, in order to forge a signed message, we need to find another message with the same hash value as $m=1299$. From our experience with the Chinese remainder theorem, we realize that changing x by $11 \cdot 29$ does not change $H(x)$. Since $1299+11 \cdot 29=1618$, a second signed message is $(1618,121)$.

