Homework Set 9

Problem 1

Example 15. Bob's public RSA key is N = 35, e = 17. Determine Bob's secret key.

Solution. The private key is $d = e^{-1} \pmod{\phi(N)}$. Here, since $\phi(35) = 4 \cdot 6 = 24$, the key is $d = 17^{-1} \pmod{24}$. We compute $17^{-1} \pmod{24}$ using the extended Euclidean algorithm (or, if you are comfortable with that, using Sage):

Backtracking through this, we find that Bézout's identity takes the form

$$1 = \boxed{7} - 2 \cdot \boxed{3} = \boxed{7} - 2 \cdot (\boxed{17} - 2 \cdot \boxed{7}) = 5 \cdot \boxed{7} - 2 \cdot \boxed{17} = 5 \cdot (\boxed{24} - \boxed{17}) - 2 \cdot \boxed{17} = 5 \cdot \boxed{24} - 7 \cdot \boxed{17}.$$

Hence, $17^{-1} \equiv -7 \equiv 17 \pmod{24}$ and, so, d = 17.

Alternatively. If you are comfortable with applying the extended Euclidean algorithm to compute inverses, you can alternatively use Sage:

>>> inverse_mod(17, 24)

17

Comment. Actually, as will be discussed in class, $\phi(N) = (p-1)(q-1) = 4 \cdot 6$ can be replaced with lcm(p-1,q-1) = lcm(4,6) = 12. It follows that the pair (e,d) = (17,17) is equivalent to the pair (e,d) = (5,5).

Problem 2

Example 16. Bob's public RSA key is N = 55, e = 31. You intercept the encrypted message c = 7 from Alice to Bob. Break the cipher and determine the plaintext.

Solution. First, as in the previous problem, we determine Bob's secret key: $d = e^{-1} \pmod{\phi(N)}$. Here, since $\phi(55) = 4 \cdot 10 = 40$, the key is $d = 31^{-1} \equiv 31 \pmod{40}$. [It's a coincidence due to small numbers that d = e again.] Finally, we need to compute $m = c^d \pmod{N}$, that is, $m = 7^{31} \equiv 18 \pmod{55}$.

Problem 3

Example 17. Bob randomly generated N = 119 for his public RSA key. What is the smallest possible choice for e?

Solution. Recall that e must be invertible modulo $\phi(N) = \phi(7)\phi(17) = 6 \cdot 16$. Hence, e = 2, 3, 4 are not allowed. Therefore, the smallest possible choice for e is e = 5.

Problem 4

Example 18. Find x such that $8 \equiv 3^x \pmod{19}$.

Solution. We proceed by brute-force and just go through the possibilities:

 $3^2 = 9, 3^3 \equiv 8 \pmod{19}$ Hence, x = 3.

As the next example shows, sometimes we might have to look for a while before finding the discrete logarithm.

[However, I have programmed the homework problem so that you will not have to search for long.]

Example 19. Find x such that $4 \equiv 3^x \pmod{19}$.

Solution. We proceed by brute-force and just go through the possibilities:

 $\begin{array}{l} 3^2 = 9,\ 3^3 \equiv 8,\ 3^4 \equiv 8 \cdot 3 \equiv 5,\ 3^5 \equiv 5 \cdot 3 \equiv -4,\ 3^6 \equiv -4 \cdot 3 \equiv 7,\ 3^7 \equiv 7 \cdot 3 \equiv 2,\ 3^8 \equiv 2 \cdot 3 \equiv 6,\ 3^9 \equiv 6 \cdot 3 \equiv -1, \\ 3^{10} \equiv -1 \cdot 3 \equiv -3,\ 3^{11} \equiv -3 \cdot 3 \equiv -9,\ 3^{12} \equiv -9 \cdot 3 \equiv -8,\ 3^{13} \equiv -8 \cdot 3 \equiv -5,\ 3^{14} \equiv -5 \cdot 3 \equiv 4 \pmod{19} \\ \end{array}$ Hence, x = 14.

Comment. As a shortcut, when we observed $3^7 \equiv 2 \pmod{19}$, we could have concluded that $4 = 2^2 \equiv 3^{7 \cdot 2} = 3^{14} \pmod{19}$ so that x = 14.

Problem 5

Example 20. Alice and Bob select p = 29 and g = 8 for a Diffie-Hellman key exchange. Alice sends 13 to Bob, and Bob sends 26 to Alice. What is their shared secret?

Solution. If Alice's secret is y and Bob's secret is x, then $8^y \equiv 13$ and $8^x \equiv 26 \pmod{29}$. We compute $8^2, 8^3, \dots \pmod{29}$ until we find either 13 or 26: $8^2 \equiv 6, 8^3 \equiv 6 \cdot 8 \equiv -10, 8^4 \equiv -10 \cdot 8 \equiv 7, 8^5 \equiv 7 \cdot 8 \equiv -2, 8^6 \equiv -2 \cdot 8 \equiv 13 \pmod{29}$. Hence, Alice's secret is y = 6. The shared secret is $(8^x)^y \equiv 26^6 \equiv 4 \pmod{29}$.

Problem 6

Example 21. Bob's public ElGamal key is (p, g, h) = (47, 45, 14). Encrypt the message m = 16 ("randomly" select y = 25) for sending it to Bob.

Solution. The ciphertext is $c = (c_1, c_2)$ with $c_1 = g^y \pmod{p}$ and $c_2 = h^y m \pmod{p}$. Here, $c_1 = 45^{25} \equiv 43 \pmod{47}$ and $c_2 = 14^{25} \cdot 16 \equiv 8 \cdot 16 \equiv 34 \pmod{47}$. Hence, the ciphertext is c = (43, 34).

Problem 7

Example 22. Your public ElGamal key is (p, g, h) = (23, 15, 8) and your private key is x = 12. Decrypt the message c = (5, 18) that was sent to you.

Solution. We decrypt $m = c_2 c_1^{-x} \pmod{p}$. Here, $m = 18 \cdot 5^{-12} \equiv 18 \cdot 5^{10} \equiv 18 \cdot 9 \equiv 1 \pmod{23}$.

Problem 8

Example 23. Bob's public ElGamal key is (p, g, h) = (41, 29, 31). Determine Bob's private key. Solution. We need to solve $29^x \equiv 31 \pmod{41}$. This yields x = 4.

(Since we haven't learned a better method (no "good" method is known!), you can just try x = 1, 2, 3, ... until you find the right one.)

Problem 9

Example 24. If Bob selects p = 23 for ElGamal, how many possible choices does he have for g? **Solution.** Since g must be a primitive root modulo p, Bob has $\phi(\phi(p)) = \phi(p-1)$ many choices for g. Here, Bob has $\phi(22) = 10$ choices.