Homework Set 9

Problem 1

Example 15. Bob's public RSA key is $N=35, e=17$. Determine Bob's secret key.
Solution. The private key is $d=e^{-1}(\bmod \phi(N))$. Here, since $\phi(35)=4 \cdot 6=24$, the key is $d=17^{-1}(\bmod 24)$. We compute $17^{-1}(\bmod 24)$ using the extended Euclidean algorithm (or, if you are comfortable with that, using Sage):

$$
\begin{aligned}
\hline 24 & =1 \cdot 17+7 \\
\hline 17 & =2 \cdot 7+3 \\
7 & =2 \cdot 3+1
\end{aligned}
$$

Backtracking through this, we find that Bézout's identity takes the form

$$
1=7-2 \cdot \mathbf{3}=7-2 \cdot(\boxed{17}-2 \cdot 7)=5 \cdot 7-2 \cdot \boxed{17}=5 \cdot(\boxed{24}-17)-2 \cdot 17=5 \cdot 24-7 \cdot 17 .
$$

Hence, $17^{-1} \equiv-7 \equiv 17(\bmod 24)$ and, so, $d=17$.
Alternatively. If you are comfortable with applying the extended Euclidean algorithm to compute inverses, you can alternatively use Sage:
>>> inverse_mod(17, 24)
17
Comment. Actually, as will be discussed in class, $\phi(N)=(p-1)(q-1)=4 \cdot 6$ can be replaced with $\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(4,6)=12$. It follows that the pair $(e, d)=(17,17)$ is equivalent to the pair $(e, d)=(5,5)$.

Problem 2

Example 16. Bob's public RSA key is $N=55, e=31$. You intercept the encrypted message $c=7$ from Alice to Bob. Break the cipher and determine the plaintext.
Solution. First, as in the previous problem, we determine Bob's secret key: $d=e^{-1}(\bmod \phi(N))$. Here, since $\phi(55)=4 \cdot 10=40$, the key is $d=31^{-1} \equiv 31(\bmod 40)$. [It's a coincidence due to small numbers that $d=e$ again.] Finally, we need to compute $m=c^{d}(\bmod N)$, that is, $m=7^{31} \equiv 18(\bmod 55)$.

Problem 3

Example 17. Bob randomly generated $N=119$ for his public RSA key. What is the smallest possible choice for e ?
Solution. Recall that e must be invertible modulo $\phi(N)=\phi(7) \phi(17)=6 \cdot 16$. Hence, $e=2,3,4$ are not allowed.
Therefore, the smallest possible choice for e is $e=5$.

Problem 4

Example 18. Find x such that $8 \equiv 3^{x}(\bmod 19)$.
Solution. We proceed by brute-force and just go through the possibilities:
$3^{2}=9,3^{3} \equiv 8(\bmod 19)$
Hence, $x=3$.
As the next example shows, sometimes we might have to look for a while before finding the discrete logarithm.
[However, I have programmed the homework problem so that you will not have to search for long.]

Example 19. Find x such that $4 \equiv 3^{x}(\bmod 19)$.
Solution. We proceed by brute-force and just go through the possibilities:
$3^{2}=9,3^{3} \equiv 8,3^{4} \equiv 8 \cdot 3 \equiv 5,3^{5} \equiv 5 \cdot 3 \equiv-4,3^{6} \equiv-4 \cdot 3 \equiv 7,3^{7} \equiv 7 \cdot 3 \equiv 2,3^{8} \equiv 2 \cdot 3 \equiv 6,3^{9} \equiv 6 \cdot 3 \equiv-1$, $3^{10} \equiv-1 \cdot 3 \equiv-3,3^{11} \equiv-3 \cdot 3 \equiv-9,3^{12} \equiv-9 \cdot 3 \equiv-8,3^{13} \equiv-8 \cdot 3 \equiv-5,3^{14} \equiv-5 \cdot 3 \equiv 4(\bmod 19)$
Hence, $x=14$.
Comment. As a shortcut, when we observed $3^{7} \equiv 2(\bmod 19)$, we could have concluded that $4=2^{2} \equiv 3^{7 \cdot 2}=$ $3^{14}(\bmod 19)$ so that $x=14$.

Problem 5

Example 20. Alice and Bob select $p=29$ and $g=8$ for a Diffie-Hellman key exchange. Alice sends 13 to Bob, and Bob sends 26 to Alice. What is their shared secret?
Solution. If Alice's secret is y and Bob's secret is x, then $8^{y} \equiv 13$ and $8^{x} \equiv 26(\bmod 29)$.
We compute $8^{2}, 8^{3}, \ldots(\bmod 29)$ until we find either 13 or 26 :
$8^{2} \equiv 6,8^{3} \equiv 6 \cdot 8 \equiv-10,8^{4} \equiv-10 \cdot 8 \equiv 7,8^{5} \equiv 7 \cdot 8 \equiv-2,8^{6} \equiv-2 \cdot 8 \equiv 13(\bmod 29)$.
Hence, Alice's secret is $y=6$. The shared secret is $\left(8^{x}\right)^{y} \equiv 26^{6} \equiv 4(\bmod 29)$.

Problem 6

Example 21. Bob's public ElGamal key is $(p, g, h)=(47,45,14)$. Encrypt the message $m=16$ ("randomly" select $y=25$) for sending it to Bob.

Solution. The ciphertext is $c=\left(c_{1}, c_{2}\right)$ with $c_{1}=g^{y}(\bmod p)$ and $c_{2}=h^{y} m(\bmod p)$.
Here, $c_{1}=45^{25} \equiv 43(\bmod 47)$ and $c_{2}=14^{25} \cdot 16 \equiv 8 \cdot 16 \equiv 34(\bmod 47)$. Hence, the ciphertext is $c=(43,34)$.

Problem 7

Example 22. Your public ElGamal key is $(p, g, h)=(23,15,8)$ and your private key is $x=12$. Decrypt the message $c=(5,18)$ that was sent to you.

Solution. We decrypt $m=c_{2} c_{1}^{-x}(\bmod p)$.
Here, $m=18 \cdot 5^{-12} \equiv 18 \cdot 5^{10} \equiv 18 \cdot 9 \equiv 1(\bmod 23)$.

Problem 8

Example 23. Bob's public ElGamal key is $(p, g, h)=(41,29,31)$. Determine Bob's private key.
Solution. We need to solve $29^{x} \equiv 31(\bmod 41)$. This yields $x=4$.
(Since we haven't learned a better method (no "good" method is known!), you can just try $x=1,2,3, \ldots$ until you find the right one.)

Problem 9

Example 24. If Bob selects $p=23$ for ElGamal, how many possible choices does he have for g ? Solution. Since g must be a primitive root modulo p, Bob has $\phi(\phi(p))=\phi(p-1)$ many choices for g. Here, Bob has $\phi(22)=10$ choices.

