
Homework Set 8

Problem 1

Example 7. What is the output of the AES-128 ByteSub applied to the byte (0011 1001)2?
Solution. (using lookup table) Using the table at https://en.wikipedia.org/wiki/Rijndael_S-box, row
(0011)2=(3)16, column (1001)2=(9)16, we find that the byte is transformed into (12)16=(0001 0010)2.

Solution. (doing the math) (0011 1001)2 represents the polynomial x5+ x4+ x3+1.

Its inverse is (x5 + x4 + x3 + 1)¡1 = x5 + x4 + x2 + 1 in GF(28) (see Example 4 for the details of this
computation), which is c=(0011 0101)2.2666666666666666666664
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[This is just the usual matrix-vector product modulo 2. The highlighted columns are the ones which get added
up during this matrix-vector product.]
Hence, the output of ByteSub is the byte (0001 0010)2.

Problem 2

Example 8. What are the multiplicative orders of 2 and 4 modulo 7?
Solution. Since �(7)= 6, the possible orders of residues modulo 7 are 1; 2; 3; 6.

Since 22=4�/ 1, 23� 1 (mod7), the multiplicative order of 2 (mod7) is 3.
Since 42� 2�/ 1, 43� 1 (mod7), the multiplicative order of 4 (mod7) is 3.
Alternatively. For the second part, we could have also used that, if x (modm) has (multiplicative) order k,
then xa has order k

gcd (k; a)
. Therefore, 4=22 has multiplicative order 3

gcd (3; 3)
=3 modulo 7.

Problem 3

Example 9. Suppose 4 has multiplicative order 17 modulo m. What is the multiplicative order
of 64 modulo m?
Solution. Recall that, if x (modm) has (multiplicative) order k, then xa has order k

gcd (k; a)
.

Therefore, 64=43 has multiplicative order 17
gcd (17; 3)

= 17 modulo m.

Problem 4

Example 10. Suppose 2 has multiplicative order 21 modulo m. What is the multiplicative order
of 8 modulo m?
Solution. Recall that, if x (modm) has (multiplicative) order k, then xa has order k

gcd (k; a)
.

Therefore, 8=23 has multiplicative order 21
gcd (21; 3)

=7 modulo m.
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Problem 5

Example 11. List all primitive roots modulo 14.

Solution. Since �(14) = �(2)�(7) = 6, the possible orders of residues modulo 14 are 1; 2; 3; 6. Residues with
order 6 are primitive roots. Our strategy is to find one primitive root and to use that to compute all primitive roots.
There is no good way of finding the first primitive root. We will just try the residues 3; 5; ::: (we are skipping 2
because it is not invertible modulo 14).
We compute the order of 3 (mod14):
Since 32=9�/ 1, 33�¡1�/ 1 (mod14), we find that 3 has order 6. Hence, 3 is a primitive root.
All other invertible residues are of the form 3x with x=0; 1; 2; :::; 5 (note that 5= �(14)¡ 1).
Recall that the order of 3x (mod14) is 6

gcd (6; x)
.

Hence, 3x is a primitive root if and only if gcd (6; x)= 1, which yields x=1; 5.

In conclusion, the primitive roots modulo 14 are 31=3; 35� 5.

Example 12. List all primitive roots modulo 22.

Solution. We proceed as in the previous example:

� Since �(22)= 10, the possible orders of residues modulo 22 are 1; 2; 5; 10.

� We find one primitive root by trying residues 3; 5; ::: (2 is out because it is not invertible modulo 22)
32�/ 1 but 35� 1 (mod22), so 3 is not a primitive root modulo 22.
52�/ 1 but 55� 1 (mod22), so 5 is not a primitive root modulo 22.
72�/ 1, 75�¡1�/ 1 (mod22), so 7 is a primitive root modulo 22.

� 7x (mod22) has order 10
gcd (10; x)

. We have gcd (10; x)= 1 for x=1; 3; 7; 9.

� Hence, the primitive roots modulo 22 are 71=7; 73� 13; 77� 17; 79� 19.

Problem 6

Example 13. What is the number of primitive roots modulo 29?

Solution. �(�(29))= �(28)= �(4)�(7)= (4¡ 2) � 6= 12
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Problem 7

Example 14. Bob's public RSA key is N = 77, e= 49. Encrypt the message m= 38 for sending
it to Bob.
Solution. The ciphertext is c=me (modN). Here, c� 3849� 31 (mod77). Hence, c= 31.
Here, we skipped over the computation of 3849 (mod 77) because we discussed these earlier. Your options
include:

� Doing the computation by hand using binary exponentation (and a calculator for support):
382� 58, 384� 53, 388� 37, 3816� 60, 3832� 58 (mod77)
Since 49= 32+ 16+1, we have 3849= 3832 � 3816 � 38� 58 � 60 � 38� 31 (mod77).

� If you are comfortable with binary exponentation, you may use Sage to do the computation:

>>> power_mod(38, 49, 77)

31

� If you insisted on doing things by hand and without any support by a calculator, you could use the Chinese
Remainder Theorem to work with smaller numbers:
3849� 349� 31=3 (mod7) [we used little Fermat to reduce the exponent]

3849� 549� 5¡1�¡2 (mod11) [note how we preferred 5¡1 over 59]

Therefore, 3849� 3 � 11 � 11mod7
¡1

2

¡ 2 � 7 � 7mod11
¡1

¡3

� 66+ 42� 31 (mod77).

However, notice that we used the fact that 77=7 � 11. In practice, Alice cannot factor N (if she could,
then she could easily obtain Bob's private key) so we wouldn't be able to proceed this way. However,
when Bob decrypts he could (and in practice often does!) use the Chinese Remainder Theorem.
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