
Preparing for the Final MATH 481/581 � Cryptography
Final Exam: Wednesday, May 1, 2024

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1. The final exam will be comprehensive, that is, it will cover the material of the whole semester.

� Make sure that you have completed all homework.

� Review the practice problems for both midterms (for the material up to Midterm #2).

� The problems below cover the material since Midterm #2.

Problem 2. We use the (silly) hash function H(x)=x (mod25).

Alice's public RSA key is (N; e)= (55; 13), her private key is d= 17.

(a) How does Alice sign the message m= 3141592?

(b) How does Bob verify her message?

(c) Verify whether the message (m; s)= (1234; 9) was signed by Alice.

(d) Give an example of a collision of our hash function.

Solution.

(a) H(m)= 17. The signature therefore is s=H(m)d= 1717 (mod55).

Doing the usual binary exponentiation (172� 14, 174� 31, 178� 26, 1716� 16), 1717= 1716 � 17� 52 (mod 55).
Hence, the signature is s= 52.

(b) Bob receives the signed message (m; s)= (3141592; 52).

He computes H(m)=17 and then checks using the public key whether H(m)� s13 (mod55). Indeed, doing the
usual binary exponentiation, 5213� 17 (mod55), so the signature checks out.

(c) For m= 1234, we compute H(m)= 9 and then check, using the public key, whether H(m)� s13 (mod55).

Doing the usual binary exponentiation, 913� 14 (mod 55). Since this does not equal H(m) = 9, the signature
is not Alice's.

(d) For instance, the messages m=1 and m= 26 have the same hash value H(m)= 1.

Problem 3. Consider the compression function H~: f4 bitsg!f2 bitsg defined by

x 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
H~(x) 00 10 11 01 10 00 01 11 11 01 00 10 01 11 10 00

(a) Let H(x) be the hash function obtained from H~ using the Merkle�Damgård construction (using initial value
h1= 00). Compute H(111101).

Armin Straub
straub@southalabama.edu

1



(b) Find a collision with H(111101).

Solution.

(a) Since H~ compresses by 2 bits, we need to chop x= 111101 into blocks xi of 2 bits: x1= 11, x2= 11, x3= 01.

h1= 00

h2=H~(h1; x1)=H~(0011)= 01

h3=H~(h2; x2)=H~(0111)= 11

h4=H~(h3; x3)=H~(1101)= 11

Hence, H(111101)=h4= 11.

(b) Our computation above shows that, for instance, H(1111)= 11 as well. Other collisions include H(10)= 11.

Problem 4.

(a) Does Alice have to choose a new y if she sends several messags to Bob using ElGamal? Explain.

(b) The movie �Swordfish� features a DoD system using 128 bit RSA, which is broken by one of the actors. What
is your reaction to that?

(c) Can encryption and/or decryption of RSA be sped up by the Chinese Remainder Theorem?

(d) Give two examples of side-channels that can be exploited in a side-channel attack.

(e) What is a NOBUS backdoor?

(f) Let p be a large prime. State the discrete logarithm problem, the computational Diffie-Hellman problem as
well as the decisional Diffie-Hellman problem, all modulo p. Rank these three problems by their difficulty.

(g) Which primes p are called safe? What is the implication of using a safe prime for ElGamal?

(h) (optional) Due to using a poor PRG, the same prime p is used for two RSA public keys (N1; e1) and (N2; e2).
Explain how to break both keys.

(i) (optional) Alice encrypts m using each of the RSA public keys (N ; e1) and (N; e2). From the ciphertexts
c1=me1 (modN) and c2=me2 (modN), explain under which condition, and how, Eve can determine m.

Solution.

(a) Yes, she absolutely has to randomly choose a new y every time! Here's why:

If she was using the same y to encrypt messages m(1) and m(2), Alice would be sending the ciphertexts¡
c1
(1); c2

(1)�=(gy; gxym(1)) and
¡
c1
(2); c2

(2)�=(gy; gxym(2)).

That means, Eve can immediately figure out c2
(1)/c2

(2) =m(1)/m(2) (the divison is a modular inverse and
everything is modulo p). That's a combination of the plaintexts, and Eve should never be able to get her hands
on such a thing.

(Also, Eve would know right away that Alice is doing the mistake of reusing y because c1
(1)= c1

(2).)

Comment. The situation is just like for the one-time pad (in that case, reusing the key reveals m(1)�m(2)).

(b) Looks like someone confused AES and RSA. While AES exists in a 128 bit version, key sizes for RSA are at
least 1024 bit. 128 bit RSA would not provide any security.

https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/

Armin Straub
straub@southalabama.edu

2

https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/
https://blog.cryptographyengineering.com/2012/01/30/bad-movie-cryptography-of-week/


(c) Decryption can be sped up using the CRT, but encryption cannot. That's because using the CRT requires
knowledge of the factorization of N = pq. (See Example 162(a).)

(d) Typical examples of side-channels include timing or power consumption.

(e) A NOBUS backdoor (�nobody but us�) is a backdoor into a cryptosystem which can only be used by the person
who knows a secret (which is infeasible to obtain by anyone else even if they know about the backdoor).

The term is also used to describe vulnerabilities in a cryptosystem which only a powerful agency (like the NSA)
has the capabilities to exploit (in which case the agency might be happy to keep these vulnerabilities alive).

https://en.wikipedia.org/wiki/NOBUS

(f) The DL problem is the following: given g; gx (mod p), find x.

The CDH problem is the following: given g; gx; gy (mod p), find gxy (mod p).

The DDH problem is the following: given g; gx; gy; r (mod p), decide whether r� gxy (mod p).

DL is harder than CDH, which is harder than DDH.

(g) A prime p is called safe if (p¡ 1)/2 is a prime as well.

In general, checking whether a residue g is a primitive root (or, at least, has large order), so that we can use
it for ElGamal, is difficult (because it typically involves factoring p¡ 1).

On the other hand, if p is a safe prime, then all residues g�/ 0;�1 (mod p) have (large!) order (p¡1)/2 or p¡1.
In other words, all these residues are primitive roots (order p¡1) or squares of primitives roots (order (p¡1)/2).

(h) Since gcd (N1;N2)= p (except in the exceedingly unlikely case that, by accident, N1=N2), we can factor both
N1 and N2, and determine the secret key d1 (and, likewise, d2) by computing d1� e1

¡1 (mod �(N1)) where
�(N1)= (p¡ 1)

�
N1
p
¡ 1

�
.

(i) The crucial observation is that c1xc2
y�me1xme2y=me1x+e2y (modN). Eve can choose x and y.

She knows m if she can arrange x and y such that e1x+ e2y=1. This is possible if gcd (e1; e2) = 1, in which
case Eve would use the extended Euclidean algorithm to determine appropriate x and y.

Problem 5.

(a) A hash function h(x) is called one-way if .

(b) A hash function h(x) is called (strongly) collision-resistant if .

(c) Does using a hash function provide authenticity?

(d) What's the difference between a compression function and a hash function? Which construction allows us to
create the latter from the former?

(e) Let Ek be encryption using a block cipher (like AES). Is the compression function H~ defined by

H~(x; k)=Ek(x)

one-way? If it isn't, suggest a variation which is expected to be collision-resistant.

(f) Is SHA-2 considered a secure password hashing algorithm?

(g) What does it mean to salt a password?

Armin Straub
straub@southalabama.edu

3

https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS
https://en.wikipedia.org/wiki/NOBUS


(h) In which sense are MD5 and SHA-1 broken? For which purposes must they not be used anymore? For which
purposes is it still acceptable to use these hash functions?

(i) Explain why using a hash with 128 output bits is not appropriate for digital signatures.

(j) List the main ideas for storing human passwords for authentication.

(k) You need to hash (salted) passwords for storage. Unfortunately, you only have SHA-2 available. What can you
do?

(l) We have learned about the birthday paradox. What is its implication for hash functions?

(m) Let H be a cryptographic hash function. What is a simple way to construct a MAC from H?

(n) Both digital signatures and MACs provide authenticity. What aspect of authenticity do digital signatures
provide that MACs don't?

Solution.

(a) h(x) is called one-way if, given y, it is computationally infeasible to compute m such that h(m) = y. Such a
function is also called preimage-resistant.

(b) h(x) is called (strongly) collision-resistant if it is computationally infeasible to find two messages m1;m2 such
that h(m1)=h(m2).

(c) No, everybody can use the same hash function. To provide authenticity, a digital signature or a MAC can be
used.

(d) A hash function H is a function, which takes an input x of arbitrary length, and produces an output H(x) of
fixed length, say, b bit. On the other hand, a compression function H~ takes input x of length b+ c bits, and
produces output H~(x) of length b bits.

One popular construction to create hash functions from compression functions is the Merkle�Damgård con-
struction.

(e) No, it is not one-way.

Indeed, given y, we can produce many different (x;k) such that H~(x;k)= y or, equivalently, Ek(x)= y. Namely,
pick any k, and then choose x=Dk(y).

On the other hand, the compression function H~ defined by

H~(x; k)=Ek(x)�x

is usually expected to be collision-resistant (see Example 199).

(f) No, it is too fast.

(g) It means that we don't compute the hash H(m) of a password m but instead H(s;m) where s is some random
data, called the salt. We must then pass on both s and H(s;m).

(h) MD5 and SHA-1 have been demonstrated to not be collision-resistant.

As a consequence, they must not be used for applications like digital signatures, which rely on collision-
resistance.

However, MD5 and SHA-1 are still considered one-way. Hence, it is acceptable (and still widespread practice)
to use these hash functions for file integrity checking or, when iterated sufficiently to slow them down, for
password storage.

Armin Straub
straub@southalabama.edu

4



(i) Digital signatures require a collision-resistant hash function. Using a birthday attack, for a hash with 128
output bits, a collision can be found by computing about 264 hashes. That's not easy but doable with some
effort (keep in mind that DES was brute-forced as early as 1997; that required computing about 256 cases; 264

is only 28= 256 times as large).

[On the other hand, brute-force is currently infeasible for 2128 cases, which is why AES-128 is considered secure
despite its 128 bit key size.]

(j) Instead of passwords m, the hashes H(s; m) should be stored together with s, a unique (typically random)
value called �salt�. Moreover, it is important to use a (slow!) hash function H designed for password storage.
The usual hash functions like SHA-2 are too fast (thus making brute-force attacks practical).

(k) Iterate many times! (In order to slow down the computation of the hash.) The naive way would be to simply
set h0=H(m) and hn+1=H(hn). Then use as hash the value hN for large N .

In current applications, it is typical to choose N on the order of 100; 000 or higher (depending on how long is
reasonable to have your user wait each time she logs in and needs her password hashed for verification).

(l) For collision-resistance, the output size of a hash function needs to have twice the number of bits that would
be necessary to prevent a brute-force attack.

(m) We can simply produce a MAC Mk(x) (usually referred to as a HMAC) as follows:

Mk(x)=H(k; x)

Comment. This seems to work fine for instance for SHA-3. On the other hand, this does not appear sufficiently
secure for certain other common hashes. Instead, it is common to use Mk(x)=H(k;H(k;x)) (as well as certain
padding).

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

(n) A MAC does not offer non-repudiation because several parties know the private key. Hence, it cannot be
proven to a third party who among those computed the MAC (and, in any case, such a discussion would make
it necessary to reveal the private key, which is usually unacceptable).

Armin Straub
straub@southalabama.edu

5

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

