Good luck!

Problem 1. ($3+3$ points) Bob's public RSA key is $N=51, e=13$.
(a) Encrypt the message $m=7$ for sending it to Bob.
(b) Determine Bob's secret private key d.

Problem 2. (4 points) Alice and Bob select $p=19$ and $g=10$ for a Diffie-Hellman key exchange. Alice sends 3 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Problem 3. ($1+\mathbf{3}$ points) Consider the finite field GF $\left(2^{4}\right)$ constructed using $x^{4}+x+1$.
(a) Multiply x^{3} and $x+1$ in $\operatorname{GF}\left(2^{4}\right)$.
(b) Determine the inverse of x^{2} in $\operatorname{GF}\left(2^{4}\right)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

$$
E_{k}\left(b_{1} b_{2} b_{3}\right)=\left(b_{1} b_{3} b_{2}\right) \oplus k
$$

Encrypt $m=(110110110 \ldots)_{2}$ using $k=(001)_{2}$ and CBC mode $\left(\mathrm{IV}=(111)_{2}\right)$.

Problem 5. (14 points) Fill in the blanks.
(a) For his ElGamal key, which of p, g and x must Bob choose randomly?
(b) For his RSA key, which of p, q and e must Bob choose randomly?
(c) Bob's public ElGamal key is (p, g, h). To send m to Bob, we encrypt it as

(d) If the public ElGamal key is (p, g, h), then the private key x can be determined by solving

(e) DES has a block size of
 bits, a key size of
 rounds.
(f) Suppose we are using 3DES with key $k=\left(k_{1}, k_{2}, k_{3}\right)$, where each k_{i} is an independent DES key.

(g) AES-128 has a block size of \square
 bits and consists of
 rounds.
(h) Which is the only nonlinear layer of AES? \square
(i) For his public ElGamal key, Bob selected $p=41$. He has \square choices for g.
(j) For his public RSA key, Bob selected $N=77$. The smallest choice for e with $e \geqslant 2$ is
(k) 13 is a primitive root modulo 19 . For which x is 13^{x} a primitive root modulo 19 ?
\square
(l) If x has (multiplicative) order 20 modulo 77 , then x^{8} has order \square
(m) The computational Diffie-Hellman problem is: given \square determine

(n) Up to x, there are roughly \square many primes.

