Midterm #2

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 32 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (3+3 points) Bob's public RSA key is N = 51, e = 13.

(a) Encrypt the message m = 7 for sending it to Bob.

(b) Determine Bob's secret private key d.

Problem 2. (4 points) Alice and Bob select p = 19 and g = 10 for a Diffie-Hellman key exchange. Alice sends 3 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Problem 3. (1+3 points) Consider the finite field $GF(2^4)$ constructed using $x^4 + x + 1$.

- (a) Multiply x^3 and x+1 in $GF(2^4)$.
- (b) Determine the inverse of x^2 in $GF(2^4)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

 $E_k(b_1b_2b_3) = (b_1b_3b_2) \oplus k.$

Encrypt $m = (110 \ 110 \ 110 \dots)_2$ using $k = (001)_2$ and CBC mode $(IV = (111)_2)$.

Problem 5. (14 points) Fill in the blanks.						
(a)	For his ElGamal key, which of p, g and x must Bob choose randomly?					
(b)	For his RSA key, which of p, q and e must Bob choose randomly?					
(c)	Bob's public ElGamal key is (p, g, h) . To send m to Bob, we encrypt it as					
	c = . (Indicate if any random choices are involved.)					
(d)	If the public ElGamal key is (p, g, h) , then the private key x can be determined by solving					
(e)	DES has a block size of	bits, a key size of	bit	s and consists of	rou	ınds.
(f)	Suppose we are using 3DES with key $k = (k_1, k_2, k_3)$, where each k_i is an independent DES key.					
	Then m is encrypted to $c =$. The effective k	ey size is	bits.
(g)	AES-128 has a block size of	f bits, a key siz	e of	bits and consist	s of	rounds.
(h)	Which is the only nonlinear	c layer of AES?				
(i)	For his public ElGamal key, Bob selected $p = 41$. He has choices for g .					
(j)	For his public RSA key, Bob selected $N = 77$. The smallest choice for e with $e \ge 2$ is					
(k)	(k) 13 is a primitive root modulo 19. For which x is 13^x a primitive root modulo 19?					
(1)	1) If x has (multiplicative) order 20 modulo 77, then x^8 has order					
(m)	The computational Diffie–H	lellman problem is: given			, determine	
(n)	Up to x , there are roughly			many primes.		

(extra scratch paper)