Good luck!

Problem 1. ($3+\mathbf{3}$ points) Bob's public RSA key is $N=51, e=13$.
(a) Encrypt the message $m=7$ for sending it to Bob.
(b) Determine Bob's secret private key d.

Solution.

(a) The ciphertext is $c=m^{e}(\bmod N)$. Here, $c \equiv 7^{13}(\bmod 51)$.
$7^{2}=49 \equiv-2,7^{4} \equiv 4,7^{8} \equiv 16(\bmod 51)$. Hence, $7^{13}=7^{8} \cdot 7^{4} \cdot 7 \equiv 16 \cdot 4 \cdot 7 \equiv 13 \cdot 7 \equiv 40(\bmod 51)$. Hence, $c=40$.
(b) $N=3 \cdot 17$, so that $\phi(N)=2 \cdot 16=32$.

To find d, we compute $e^{-1}(\bmod 32)$. Either by inspection or using the extended Euclidean algorithm, we find $d=13^{-1} \equiv 5(\bmod 32)$.

Comment. Actually, as discussed in class, $\phi(N)=(p-1)(q-1)=32$ can effectively be replaced with $\operatorname{lcm}(p-1$, $q-1)=16$. Here, we again get $d=13^{-1} \equiv 5(\bmod 16)$ for the private key.

Problem 2. (4 points) Alice and Bob select $p=19$ and $g=10$ for a Diffie-Hellman key exchange. Alice sends 3 to Bob, and Bob sends 12 to Alice. What is their shared secret?

Solution. If Alice's secret is y and Bob's secret is x, then $10^{y} \equiv 3$ and $10^{x} \equiv 12(\bmod 19)$.
We compute $10^{2}, 10^{3}, \ldots$ until we find either 3 or 12 :
$10^{2} \equiv 5,10^{3} \equiv 50 \equiv 12(\bmod 19)$.
Hence, Bob's secret is $x=3$. The shared secret is $3^{3} \equiv 8(\bmod 19)$.

Problem 3. ($\mathbf{1}+\mathbf{3}$ points) Consider the finite field GF $\left(2^{4}\right)$ constructed using $x^{4}+x+1$.
(a) Multiply x^{3} and $x+1$ in $\operatorname{GF}\left(2^{4}\right)$.
(b) Determine the inverse of x^{2} in $\mathrm{GF}\left(2^{4}\right)$.

Solution.

(a) $x^{3}(x+1)=x^{4}+x^{3}=x^{3}+x+1$ in $\mathrm{GF}\left(2^{4}\right)$.
(b) We use the extended Euclidean algorithm, and always reduce modulo 2:

$$
\begin{aligned}
x^{4}+x+1 & \equiv x^{2} \cdot x^{2}+(x+1) \\
x^{2} & \equiv(x+1) \cdot x+1+1
\end{aligned}
$$

Backtracking through this, we find that Bézout's identity takes the form

$$
1 \equiv x^{2}+(x+1) \cdot x+1 \equiv x^{2}+(x+1) \cdot\left(\boxed{x^{4}+x+1}+x^{2} \cdot x^{2}\right) \equiv(x+1) x^{4}+x+1+\left(x^{3}+x^{2}+1\right) \cdot x^{2}
$$

Hence, $\left(x^{2}\right)^{-1}=x^{3}+x^{2}+1$ in $\operatorname{GF}\left(2^{4}\right)$.

Problem 4. (4 points) Consider the (silly) block cipher with 3 bit block size and 3 bit key size such that

$$
E_{k}\left(b_{1} b_{2} b_{3}\right)=\left(b_{1} b_{3} b_{2}\right) \oplus k
$$

Encrypt $m=(110110110 \ldots)_{2}$ using $k=(001)_{2}$ and CBC mode $\left(\operatorname{IV}=(111)_{2}\right)$.

Solution. $m=m_{1} m_{2} m_{3} \ldots$ with $m_{1}=m_{2}=m_{3}=110$.
$c_{0}=111$
$c_{1}=E_{k}\left(m_{1} \oplus c_{0}\right)=E_{k}(110 \oplus 111)=E_{k}(001)=010 \oplus 001=011$
$c_{2}=E_{k}\left(m_{2} \oplus c_{1}\right)=E_{k}(110 \oplus 011)=E_{k}(101)=110 \oplus 001=111$
$c_{3}=E_{k}\left(m_{3} \oplus c_{2}\right)=E_{k}(110 \oplus 111)=E_{k}(001)=010 \oplus 001=011$
Hence, the ciphertext is $c=c_{0} c_{1} c_{2} c_{3} \ldots=(111011111011 \ldots)$.

Problem 5. (14 points) Fill in the blanks.
(a) For his ElGamal key, which of p, g and x must Bob choose randomly?
(b) For his RSA key, which of p, q and e must Bob choose randomly?
(c) Bob's public ElGamal key is (p, g, h). To send m to Bob, we encrypt it as

(d) If the public ElGamal key is (p, g, h), then the private key x can be determined by solving
\square
(e) DES has a block size of

bits, a key size of

(f) Suppose we are using 3 DES with key $k=\left(k_{1}, k_{2}, k_{3}\right)$, where each k_{i} is an independent DES key.

(g) AES-128 has a block size of
 bits, a key size of
 bits and consists of

(h) Which is the only nonlinear layer of AES?
(i) For his public ElGamal key, Bob selected $p=41$. He has \square choices for g.
(j) For his public RSA key, Bob selected $N=77$. The smallest choice for e with $e \geqslant 2$ is \square
(k) 13 is a primitive root modulo 19 . For which x is 13^{x} a primitive root modulo $19 ?$
\square
(l) If x has (multiplicative) order 20 modulo 77 , then x^{8} has order \square
(m) The computational Diffie-Hellman problem is: given

(n) Up to x, there are roughly \square many primes.

Solution.

(a) x must be chosen randomly.
(b) p and q must be chosen randomly.
(c) Bob's public ElGamal key is (p, g, h). To send m to Bob, we encrypt it as $c=\left(g^{y}, h^{y} m\right)$ (all modulo p), where y was randomly chosen.
(d) If the public ElGamal key is (p, g, h), then the private key x can be determined by solving $g^{x} \equiv h(\bmod p)$.
(e) DES has a block size of 64 bits, a key size of 56 bits and consists of 16 rounds.
(f) m is encrypted to $c=E_{k_{3}}\left(D_{k_{2}}\left(E_{k_{1}}(m)\right)\right)$.

The effective key size is 112 bits (because of the meet-in-the-middle attack).
(g) AES-128 has a block size of 128 bits, a key size of 128 bits and consists of 10 rounds.
(h) The nonlinear layer of AES is ByteSub.
(i) He has $\phi(\phi(41))=\phi(40)=\phi(8) \phi(5)=16$ choices for g.
(j) Since $\phi(77)=\phi(7) \phi(11)=60$, the smallest choice for e with $e \geqslant 2$ is 7 .
(k) 13^{x} a primitive root modulo 19 if and only if $\operatorname{gcd}(x, 18)=1$. These x (modulo 18) are $1,5,7,11,13,17$. (The total number is $\phi(\phi(19))=\phi(18)=\phi(2) \phi(9)=6$.)
(l) If x has (multiplicative) order 20 modulo 77 , then x^{8} has order $\frac{20}{\operatorname{gcd}(8,20)}=5$.
(m) The CDH problem is the following: given $g, g^{x}, g^{y}(\bmod p)$, find $g^{x y}(\bmod p)$.
(n) Up to x, there are roughly $x / \ln (x)$ many primes.

